Publications by authors named "Marzieh Ovesy"

Screws are the most frequently used implants for treatment of bone fractures and play an essential role in determining fixation stability. Robust prediction of the bone-screw interface failure would enable development of improved fixation strategies and implant designs, ultimately reducing failure rates and improving outcomes of bone fracture treatments. This study aimed to compare the accuracy of micro-computed tomography image based bone volume measures, linear micro-finite element (FE) and non-linear micro-FE simulations in predicting pull-out force of 3.

View Article and Find Full Text PDF

Surgical treatment of proximal humerus fractures remains challenging, with a reported failure rate ranging from 15% to 35%. The dominant failure mode is secondary, i.e.

View Article and Find Full Text PDF

Prediction of primary stability is a major challenge in the surgical planning of dental and orthopedic implants. Computational methods become attractive to estimate primary stability from clinical CT images, but implicit finite element analysis of implant press-fit faces convergence issues due to contact and highly distorted elements. This study aims to develop and validate an explicit finite element method to simulate the insertion and primary stability of a rigid implant in a deformable bone while accounting for damage occurring at the bone-implant interface.

View Article and Find Full Text PDF

The assessment of dental implant performance is dominated by the concept of mechanical stability. Primary stability is defined as the capacity of a bone-implant structure to bear loads without occurrence of excessive damage and loosening. In order to achieve the highest primary stability, dental implants are inserted into bone using a press-fit procedure.

View Article and Find Full Text PDF

Homogenised finite element (FE) analyses are able to predict osteoporosis-related bone fractures and become useful for clinical applications. The predictions of FE analyses depend on the apparent, heterogeneous, anisotropic, elastic, and yield material properties, which are typically determined by implicit micro-FE (μFE) analyses of trabecular bone. The objective of this study is to explore an explicit μFE approach to determine the apparent post-yield behaviour of trabecular bone, beyond the elastic and yield properties.

View Article and Find Full Text PDF

Stability of an implant is defined by its ability to undergo physiological loading-unloading cycles without showing excessive tissue damage and micromotions at the interface. Distinction is usually made between the immediate primary stability and the long-term, secondary stability resulting from the biological healing process. The aim of this research is to numerically investigate the effect of initial implantation press-fit, bone yielding, densification and friction at the interface on the primary stability of a simple bone-implant system subjected to loading-unloading cycles.

View Article and Find Full Text PDF

In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented.

View Article and Find Full Text PDF