Publications by authors named "Marzie Bahadori"

Background: Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard.

View Article and Find Full Text PDF

Background: Hematopoietic stem cell (HSC) transplantation is considered a possible treatment option capable of curing various diseases. The aim of this study was the co-culturing of mesenchymal stem cell (MSC) spheres with HSCs under hypoxic condition to enhance the proliferation, self-renewal, stemness, and homing capacities of HSCs.

Methods And Results: HSCs were expanded after being subjected to different conditions including cytokines without feeder (Cyto), co-culturing with adherent MSCs (MSC), co-culturing with adherent MSCs + hypoxia (MSC + Hyp), co-culturing with MSCs spheres (Sph-MSC), co-culturing with MSCs spheres + hypoxia (Sph-MSC + Hyp), co-culturing with MSC spheres + cytokines (Sph-MSC + Cyto).

View Article and Find Full Text PDF

Today, the prevalence of kidney diseases is increasing around the world, but there has still been no effective medical treatment. The therapeutic choices are confined to supportive cares and preventive strategies. Currently, mesenchymal stem cells (MSCs)-based cell therapy was proposed for the treatment of kidney injuries.

View Article and Find Full Text PDF

Objectives: Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regeneration potential of injured kidney especially expression of injury and repaired biomarkers.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are valuable for cell-based therapy. However, their application is limited owing to their low survival rate when exposed to stressful conditions. Autophagy, the process by which cells recycle the cytoplasm and dispose of defective organelles, is activated by stress stimuli to adapt, tolerate adverse conditions, or trigger the apoptotic machinery.

View Article and Find Full Text PDF

Objectives: Lipocalin2 (Lcn2) gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism.

View Article and Find Full Text PDF

Objective: Wharton's jelly (WJ), an appropriate source of mesenchymal stem cells (MSCs), has been shown to have a wide array of therapeutic applications. However, the WJ-derived MSCs are very heterogeneous and have limited expression of pluripotency markers. Hence, improvement of their culture condition would promote the efficiency of WJ-MSCs.

View Article and Find Full Text PDF