Current cancer research is limited by the availability of reliable in vivo and in vitro models that are able to reproduce the fundamental hallmarks of cancer. Animal experimentation is of paramount importance in the progress of research, but it is becoming more evident that it has several limitations due to the numerous differences between animal tissues and real, in vivo human tissues. 3D bioprinting techniques have become an attractive tool for many basic and applied research fields.
View Article and Find Full Text PDFHuman Epidermal growth factor Receptor 2 (HER2) overexpression or gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies.
View Article and Find Full Text PDFDe novo or acquired resistance of cancer cells to currently available Human Epidermal Growth Factor Receptor 2 (HER2) inhibitors represents a clinical challenge. Several resistance mechanisms have been identified in recent years, with lipid metabolism reprogramming, a well-established hallmark of cancer, representing the last frontier of preclinical and clinical research in this field. Fatty Acid Synthase (FASN), the key enzyme required for fatty acids (FAs) biosynthesis, is frequently overexpressed/activated in HER2-positive (HER2+) breast cancer (BC), and it crucially sustains HER2+ BC cell growth, proliferation and survival.
View Article and Find Full Text PDF