Publications by authors named "Marzia Portoghese"

Purpose: Aim of this study was to evaluate a fully automated deep learning network named Efficient Neural Network (ENet) for segmentation of prostate gland with median lobe enlargement compared to manual segmentation.

Materials And Methods: One-hundred-three patients with median lobe enlargement on prostate MRI were retrospectively included. Ellipsoid formula, manual segmentation and automatic segmentation were used for prostate volume estimation using T2 weighted MRI images.

View Article and Find Full Text PDF

Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardware availability while still achieving accurate segmentation.

View Article and Find Full Text PDF