Publications by authors named "Marzia A Cremona"

Unlabelled: Motif discovery is gaining increasing attention in the domain of functional data analysis. Functional motifs are typical "shapes" or "patterns" that recur multiple times in different portions of a single curve and/or in misaligned portions of multiple curves. In this paper, we define functional motifs using an additive model and we propose for their discovery and evaluation.

View Article and Find Full Text PDF

Higher nurse-to-patient ratios are associated with poor patient care and adverse nurse outcomes, including emotional exhaustion and intention to leave. We examined the effect of nurses' intention to leave and nurse-patient workload on in-hospital patient mortality in Italy. A multicentered descriptive and regression study using clinical data of patients aged 50 years or older with a hospital stay of at least two days admitted to surgical wards linked with nurse variables including workload and education levels, work environment, job satisfaction, intention to leave, nurses' perception of quality and safety of care, and emotional exhaustion.

View Article and Find Full Text PDF

Approximately 13% of the human genome at certain motifs have the potential to form noncanonical (non-B) DNA structures (e.g., G-quadruplexes, cruciforms, and Z-DNA), which regulate many cellular processes but also affect the activity of polymerases and helicases.

View Article and Find Full Text PDF

Background: Protein-DNA binding sites of ChIP-seq experiments are identified where the binding affinity is significant based on a given threshold. The choice of the threshold is a trade-off between conservative region identification and discarding weak, but true binding sites.

Results: We rescue weak binding sites using MSPC, which efficiently exploits replicates to lower the threshold required to identify a site while keeping a low false-positive rate, and we compare it to IDR, a widely used post-processing method for identifying highly reproducible peaks across replicates.

View Article and Find Full Text PDF

Mutations in mitochondrial DNA (mtDNA) contribute to multiple diseases. However, how new mtDNA mutations arise and accumulate with age remains understudied because of the high error rates of current sequencing technologies. Duplex sequencing reduces error rates by several orders of magnitude via independently tagging and analyzing each of the two template DNA strands.

View Article and Find Full Text PDF

We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country-including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on.

View Article and Find Full Text PDF

Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.

View Article and Find Full Text PDF

Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively.

View Article and Find Full Text PDF

Mutations create genetic variation for other evolutionary forces to operate on and cause numerous genetic diseases. Nevertheless, how de novo mutations arise remains poorly understood. Progress in the area is hindered by the fact that error rates of conventional sequencing technologies (1 in 100 or 1,000 base pairs) are several orders of magnitude higher than de novo mutation rates (1 in 10,000,000 or 100,000,000 base pairs per generation).

View Article and Find Full Text PDF

Coadaptation between bacterial hosts and plasmids frequently results in adaptive changes restricted exclusively to host genome leaving plasmids unchanged. To better understand this remarkable stability, we transformed naïve Escherichia coli cells with a plasmid carrying an antibiotic-resistance gene and forced them to adapt in a turbidostat environment. We then drew population samples at regular intervals and subjected them to duplex sequencing-a technique specifically designed for identification of low-frequency mutations.

View Article and Find Full Text PDF

DNA conformation may deviate from the classical B-form in ∼13% of the human genome. Non-B DNA regulates many cellular processes; however, its effects on DNA polymerization speed and accuracy have not been investigated genome-wide. Such an inquiry is critical for understanding neurological diseases and cancer genome instability.

View Article and Find Full Text PDF

Summary: With increased generation of high-resolution sequence-based 'Omics' data, detecting statistically significant effects at different genomic locations and scales has become key to addressing several scientific questions. IWTomics is an R/Bioconductor package (integrated in Galaxy) that, exploiting sophisticated Functional Data Analysis techniques (i.e.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome.

View Article and Find Full Text PDF

Background: ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment.

View Article and Find Full Text PDF