Caffeine induces locomotor activation by its ability to block adenosine receptors. Caffeine is metabolized to several methylxanthines, with paraxanthine being the main metabolite in humans. In this study we show that in rats paraxanthine has a stronger locomotor activating effect than caffeine or the two other main metabolites of caffeine, theophylline and theobromine.
View Article and Find Full Text PDFPavlovian fear conditioning is a model of emotional learning in which a neutral stimulus such as a tone is paired with an aversive stimulus such as a foot shock. Presentation of a tone with a foot shock in a context (test box) elicits a freezing response representative of stereotypic fear behavior. After conditioning has occurred, presentation of the context (test box) or tone in the absence of the unconditioned stimulus (shock) causes extinction of the fear response.
View Article and Find Full Text PDFIn the striatum, adenosine A2A and dopamine D2 receptors exert reciprocal antagonistic interactions that modulate the function of GABAergic enkephalinergic neurons. We have previously shown that stimulation of adenosine A1 receptors allows the stimulation of A2A receptors to overcome a tonic inhibitory effect of D2 receptors and induce striatal expression of c-fos. In the present work, by studying co-localization of c-Fos immunoreactivity and preproenkephalin and preprodynorphin transcripts, we show that co-administration of the A1 receptor agonist CPA and the A2A receptor agonist CGS 21680 increases the striatal expression of c-fos in GABAergic enkephalinergic but not in GABAergic dynorphinergic neurons.
View Article and Find Full Text PDF1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2.
View Article and Find Full Text PDFSome behavioral and biochemical effects of the systemically administered adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) in rats are potentiated by adenosine A(1) receptor agonists and counteracted by dopamine D2 receptor agonists. In the present study we compared potentiating and antagonistic interactions between CGS 21680 and adenosine A(1) and dopamine D2 receptor agonists on motor activity and on cardiovascular responses (arterial blood pressure and heart rate). The motor-depressant effects produced by CGS 21680 (0.
View Article and Find Full Text PDFWhen striatal neurons are strongly activated they produce adenosine, which activates nearby adenosine A1 receptors (A1Rs) and adenosine A2A receptors (A2ARs). Although the effects of A1R or A2AR activation on neural activity in the striatum have been examined separately, the effects of coactivating both receptors has not been investigated. Using c-Fos immunohistochemistry as an indicator of neural activity, we examined the effects of coactivation of A1Rs and A2ARs on neural activity and their mechanism of interaction in the caudate-putamen, nucleus accumbens (NAc) and prefrontal cortex in rats.
View Article and Find Full Text PDFThe involvement of adenosine A(1) and A(2A) receptors in the motor effects of caffeine is still a matter of debate. In the present study, counteraction of the motor-depressant effects of the selective A(1) receptor agonist CPA and the A(2A) receptor agonist CGS 21680 by caffeine, the selective A(1) receptor antagonist CPT, and the A(2A) receptor antagonist MSX-3 was compared. CPT and MSX-3 produced motor activation at the same doses that selectively counteracted motor depression induced by CPA and CGS 21680, respectively.
View Article and Find Full Text PDFThe physiological meaning of the coexpression of adenosine A2A receptors and group I metabotropic glutamate receptors in gamma- aminobutyric acid (GABA)ergic striatal neurons is intriguing. Here we provide in vitro and in vivo evidence for a synergism between adenosine and glutamate based on subtype 5 metabotropic glutamate (mGluR5) and adenosine A2A (A2AR) receptor/receptor interactions. Colocalization of A2AR and mGluR5 at the membrane level was demonstrated in nonpermeabilized human embryonic kidney (HEK)-293 cells transiently cotransfected with both receptors by confocal laser microscopy.
View Article and Find Full Text PDFAn increase in the extracellular concentration of dopamine in the nucleus accumbens (NAc) is believed to be one of the main mechanisms involved in the rewarding and motor-activating properties of psychostimulants such as amphetamines and cocaine. Using in vivo microdialysis in freely moving rats, we demonstrate that systemic administration of behaviorally relevant doses of caffeine can preferentially increase extracellular levels of dopamine and glutamate in the shell of the NAc. These effects could be reproduced by the administration of a selective adenosine A1 receptor antagonist but not by a selective adenosine A2A receptor antagonist.
View Article and Find Full Text PDF