Publications by authors named "Maryse Lamoureux"

The presence of virulent phages is closely monitored during cheese manufacturing, as these bacterial viruses can significantly slow down the milk fermentation process and lead to low-quality cheeses. From 2001 to 2020, whey samples from cheddar cheese production in a Canadian factory were monitored for the presence of virulent phages capable of infecting proprietary strains of Lactococcus cremoris and Lactococcus lactis used in starter cultures. Phages were successfully isolated from 932 whey samples using standard plaque assays and several industrial strains as hosts.

View Article and Find Full Text PDF

Gene expression in response to technological variations can influence fermentation and flavor generation in Cheddar cheese, and can vary from one lactococcal strain to another, perceived as differences in starter performance. The aim of this study was to determine the influence of cheese cooking temperature at 38 °C and salting on the transcriptional profiles of four closely related strains of L. lactis subsp.

View Article and Find Full Text PDF

Genetic diversity of Lactococcus lactis subsp. cremoris provides an important reservoir of industrial functions. Knowledge of strain diversity is an important step for the selection of starter cultures, because technological and sensorial attributes are strain-dependent and it may help to distinguish strains with particular technological properties and performances.

View Article and Find Full Text PDF

The lactic acid bacterium Streptococcus thermophilus is widely used by the dairy industry for its ability to transform lactose, the primary sugar found in milk, into lactic acid. Unlike the phylogenetically related species Streptococcus salivarius, S. thermophilus is unable to metabolize and grow on galactose and thus releases substantial amounts of this hexose into the external medium during growth on lactose.

View Article and Find Full Text PDF

The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight.

View Article and Find Full Text PDF