Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat.
View Article and Find Full Text PDF4-Hydroxynonenal (HNE) is a cytotoxic and genotoxic lipid oxidation secondary product which is formed endogenously upon peroxidation of cellular n-6 fatty acids. However, it can also be formed in food or during digestion, upon peroxidation of dietary lipids. Several studies have evidenced that we are exposed through food to significant concentrations of HNE that could pose a toxicological concern.
View Article and Find Full Text PDFAnimal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene.
View Article and Find Full Text PDFThe influence of tank-mix adjuvants on pesticide toxicity remains largely unknown. Agral 90, a nonylphenol polyethoxylated tank-mix adjuvant, has been used with diquat (bipyridylium herbicide) and fomesafen (diphenyl-ether herbicide) in aquatic indoor microcosms in order to compare the toxicity of the single compounds and of binary herbicide-adjuvant mixtures to Lemna minor. Twenty-four microcosms were used and treatments were performed with substances alone or with herbicide-adjuvant binary mixtures, at two concentrations levels (44.
View Article and Find Full Text PDF