: Among strategies to limit ischemia/reperfusion (IR) injuries in transplantation, cell therapy using stem cells to condition/repair transplanted organs appears promising. We hypothesized that using a cell therapy based on extracellular vesicles (EVs) derived from urine progenitor cells (UPCs) during hypothermic and normothermic machine perfusion can prevent IR-related kidney damage. We isolated and characterized porcine UPCs and their extracellular vesicles (EVs).
View Article and Find Full Text PDFThe COVID-19 outbreak caused saturations of hospitals, highlighting the importance of early patient triage to optimize resource prioritization. Herein, our objective was to test if high definition metabolomics, combined with ML, can improve prognostication and triage performance over standard clinical parameters using COVID infection as an example. Using high resolution mass spectrometry, we obtained metabolomics profiles of patients and combined them with clinical parameters to design machine learning (ML) algorithms predicting severity (herein determined as the need for mechanical ventilation during patient care).
View Article and Find Full Text PDFBackground: Although metabolomics continues to expand in many domains of research, methodological issues such as sample type, extraction and analytical protocols have not been standardized, impeding proper comparison between studies and future research.
Methods: In the present study, five solvent-based and solid-phase extraction methods were investigated in both plasma and serum. All these extracts were analyzed using four liquid chromatography coupled with high resolution mass spectrometry (LC-MS) protocols, either in reversed or normal-phase and with both types of ionization.
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient.
View Article and Find Full Text PDFPurpose Of Review: The emerging field of molecular predictive medicine is aiming to change the traditional medical approach in renal transplantation. Many studies have explored potential biomarker molecules with predictive properties in renal transplantation, issued from omics research. Herein, we review the biomarker molecules of four technologies (i.
View Article and Find Full Text PDFOrgan transplantation remains the treatment of last resort in case of failure of a vital organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted each year.
View Article and Find Full Text PDFThe demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion.
View Article and Find Full Text PDF