Publications by authors named "Maryne Follenfant"

The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements.

View Article and Find Full Text PDF

Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface.

View Article and Find Full Text PDF

The residence time of a drug on its target has been suggested as a more pertinent metric of therapeutic efficacy than the traditionally used affinity constant. Here, we introduce junctured-DNA tweezers as a generic platform that enables real-time observation, at the single-molecule level, of biomolecular interactions. This tool corresponds to a double-strand DNA scaffold that can be nanomanipulated and on which proteins of interest can be engrafted thanks to widely used genetic tagging strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic pain affects many people around the world and makes life difficult for them, but not much new medicine has been made to help.
  • Scientists studied a special family with members who can't feel pain and found a change in a gene called ZFHX2 that might be key to their condition.
  • By looking at mice with a similar gene change, researchers learned more about how pain works and found new ways to create medicines that could help people with chronic pain.
View Article and Find Full Text PDF