In contemporary drug discovery, enhancing the sp-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp)-C(sp) cross-coupling platform.
View Article and Find Full Text PDFFour-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically.
View Article and Find Full Text PDFAnnulations that combine diacceptors with bis-nucleophiles are uncommon. Here, we report the synthesis of 1,4-dioxanes from 3-aryloxetan-3-ols, as 1,2-bis-electrophiles and 1,2-diols. Brønsted acid TfNH catalyzes both the selective activation of the oxetanol, to form an oxetane carbocation that reacts with the diol, and intramolecular ring opening of the oxetane.
View Article and Find Full Text PDFOxetanes have received increasing interest in medicinal chemistry as attractive polar and low molecular weight motifs. The application of oxetanes as replacements for methylene, methyl, -dimethyl and carbonyl groups has been demonstrated to often improve chemical properties of target molecules for drug discovery purposes. The investigation of the properties of 3,3-diaryloxetanes, particularly of interest as a benzophenone replacement, remains largely unexplored.
View Article and Find Full Text PDFFour-membered rings remain underexplored motifs despite offering attractive physicochemical properties for medicinal chemistry. Arylacetic acids bearing oxetanes, azetidines, and cyclobutanes are prepared in two steps: a catalytic Friedel-Crafts reaction from four-membered ring alcohol substrates, followed by mild oxidative cleavage. The suitability of the products as building blocks is reflected in their facile purification and amenability to derivatization.
View Article and Find Full Text PDFNew small-ring derivatives can provide valuable motifs in new chemical space for drug design. 3-Aryl-3-sulfanyl azetidines are synthesized directly from azetidine-3-ols in excellent yield by a mild Fe-catalyzed thiol alkylation. A broad range of thiols and azetidinols bearing electron-donating aromatics are successful, proceeding via an azetidine carbocation.
View Article and Find Full Text PDFAzetidines are valuable motifs that readily access under explored chemical space for drug discovery. 3,3-Diarylazetidines are prepared in high yield from N-Cbz azetidinols in a calcium(II)-catalyzed Friedel-Crafts alkylation of (hetero)aromatics and phenols, including complex phenols such as β-estradiol. Electron poor phenols undergo O-alkylation.
View Article and Find Full Text PDF