Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution.
View Article and Find Full Text PDFConductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10 Ω m for 400 nm thick films sintered at 250 °C.
View Article and Find Full Text PDFGlass electrodes are the only type of pH-sensitive electrodes currently used in the food industry. While widely used, they have several disadvantages, especially in the areas of brittleness and price. Ruthenium(IV) oxide (RuO) pH electrodes are a well-known alternative to conventional glass electrodes, providing improved durability and lower price.
View Article and Find Full Text PDFScreen-printed sensing electrodes attract much attention for water pollution monitoring due to their small size, physical and chemical durability, and low cost. This paper presents the fabrication and broad potentiometric characterization of RuO pH sensing electrodes deposited by screen printing on alumina substrates and sintered in the 800-900 °C temperature range. All the fabricated electrodes showed close to Nernstian sensitivity, good linearity, fast response, small drift, low hysteresis, and low cross-sensitivity toward various interfering cations and anions.
View Article and Find Full Text PDFThe yield of product (cheese) during the cheese-making process depends on the cutting time of the cheese curd. However, the determination of optimal cutting time on an industrial scale is difficult as current standard methods are destructive or analyse only small volumes and not the entire milk to be curdled into cheese. This paper presents a novel front-face fluorimeter (FFF) that is designed to be immersed into a milk batch to enable the determination of the cutting time of cheese curd without the destruction of the sample.
View Article and Find Full Text PDF