Hierarchically porous TiO(2)/ZrO(2) millimeter-sized beads were synthesized using a sol-gel templating technique, and investigated for suitability as radionuclide sorbents using uranyl as a radionuclide-representative probe. The bead properties were varied by altering either composition (22, 36, and 82 wt % Zr in the Ti/Zr composite) or calcination temperature (500 or 700 °C). Uranyl adsorption was higher for the crystalline beads (surface area: 52-59 m(2) g(-1)) than the amorphous beads (surface area: 95-247 m(2) g(-1)), reaching a maximum of 0.
View Article and Find Full Text PDFA simple and engineering friendly one-step process has been used to prepare zirconium titanium mixed oxide beads with porosity on multiple length scales. In this facile synthesis, the bead diameter and the macroporosity can be conveniently controlled through minor alterations in the synthesis conditions. The precursor solution consisted of poly(acrylonitrile) dissolved in dimethyl sulfoxide to which was added block copolymer Pluronic F127 and metal alkoxides.
View Article and Find Full Text PDFMacro- and mesoporous hybrid materials have applications in the fields of drug delivery, catalysis, biosensing, and separations. The pore size requirements must be well-understood to maximize the performance (e.g.
View Article and Find Full Text PDF