Publications by authors named "Marylin Vantard"

Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades.

View Article and Find Full Text PDF

In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood.

View Article and Find Full Text PDF

Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development.

View Article and Find Full Text PDF

Microtubules are hollow biopolymers of 25-nm diameter and are key constituents of the cytoskeleton. In neurons, microtubules are organized differently between axons and dendrites, but their precise organization in different compartments is not completely understood. Super-resolution microscopy techniques can detect specific structures at an increased resolution, but the narrow spacing between neuronal microtubules poses challenges because most existing labelling strategies increase the effective microtubule diameter by 20-40 nm and will thereby blend neighbouring microtubules into one structure.

View Article and Find Full Text PDF

Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms.

View Article and Find Full Text PDF

Microtubules (MTs) are highly dynamical structures that play a crucial role in cell physiology. In cooperation with microtubule-associated proteins (MAPs), MTs form bundles endowing cells with specific mechanisms to control their shape or generate forces. Whether the dynamics of MTs is affected by the lateral connections that MAPs make between MTs during bundle formation is still under debate.

View Article and Find Full Text PDF

The spatial organization of the microtubule (MT) network directs cell polarity and mitosis. It is finely regulated by hundreds of different types of microtubule-associated proteins and molecular motors whose specific functions are difficult to investigate directly in cells. Here, we have investigated their functions using geometrically controlled MT networks in vitro in cell-free assay.

View Article and Find Full Text PDF

Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs.

View Article and Find Full Text PDF

A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin.

View Article and Find Full Text PDF

The acentrosomal plant mitotic spindle is uniquely structured in that it lacks opposing centrosomes at its poles and is equipped with a connective preprophase band that regulates the spatial framework for spindle orientation and mobility. These features are supported by specialized microtubule-associated proteins and motors. Here, we show that Arabidopsis thaliana MAP65-4, a non-motor microtubule associated protein (MAP) that belongs to the evolutionarily conserved MAP65 family, specifically associates with the forming mitotic spindle during prophase and with the kinetochore fibers from prometaphase to the end of anaphase.

View Article and Find Full Text PDF

The Arabidopsis MAP65s are a protein family with similarity to the microtubule-associated proteins PRC1/Ase1p that accumulate in the spindle midzone during late anaphase in mammals and yeast, respectively. Here we investigate the molecular and functional properties of AtMAP65-5 and improve our understanding of AtMAP65-1 properties. We demonstrate that, in vitro, both proteins promote the formation of a planar network of antiparallel microtubules.

View Article and Find Full Text PDF

Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not evident using optical microscopy.

View Article and Find Full Text PDF

Katanin is a heterodimeric protein that mediates ATP-dependent destabilization of microtubules in animal cells. In plants, the catalytic subunit of Arabidopsis thaliana katanin (AtKSS, Arabidopsis thaliana Katanin Small Subunit) has been identified and its microtubule-severing activity has been demonstrated in vitro. In vivo, plant katanin plays a role in the organization of cortical microtubules, but the way it achieves this function is unknown.

View Article and Find Full Text PDF

Higher plant cells exhibit interphase microtubule arrays specific to plants, which are essential for their developmental program. These cortical microtubules (CMT) consist of a population of highly dynamic microtubules that are usually organized into bundles in the cortex of the cells. The organization of CMT is intimately linked to the acquisition of specialized functions, and subsequentchanges in their distribution affect their properties.

View Article and Find Full Text PDF

Cullin (CUL)-dependent ubiquitin ligases form a class of structurally related multisubunit enzymes that control the rapid and selective degradation of important regulatory proteins involved in cell cycle progression and development, among others. The CUL3-BTB ligases belong to this class of enzymes and despite recent findings on their molecular composition, our knowledge on their functions and substrates remains still very limited. In contrast to budding and fission yeast, CUL3 is an essential gene in metazoans.

View Article and Find Full Text PDF

The organization and function of microtubules in plant cells are important in many developmental stages. Connections between microtubules and the endomembrane system of plant cells have been discovered by microscopy, but the molecular characteristics of these relationships are mostly unknown except for a few cases. Using two antibodies raised against microtubule-associated proteins (MAPs) from maize, we have identified two polypeptides that share properties of the MAP family in the pollen tube of Nicotiana tabacum.

View Article and Find Full Text PDF

Tobacco microtubule associated protein (MAP65) (NtMAP65s) constitute a family of microtubule-associated proteins with apparent molecular weight around 65 kDa that collectively induce microtubule bundling and promote microtubule assembly in vitro. They are associated with most of the tobacco microtubule arrays in situ. Recently, three NtMAP65s belonging to the NtMAP65-1 subfamily have been cloned.

View Article and Find Full Text PDF

Growing evidence shows that the actin cytoskeleton is a key effector of signal transduction, which controls and maintains the shape of plant cells, as well as playing roles in plant morphogenesis. Recently, several signaling pathways, including those triggered by hormones, Ca(2+), and cAMP, have been reported to be connected to the reorganization of the actin cytoskeleton. The molecular mechanisms involved in such signaling cascades are, however, largely unknown.

View Article and Find Full Text PDF

Temporal and spatial assembly of microtubules in plant cells depends mainly on the activity of microtubule-interacting proteins, which either stabilize, destabilize or translocate microtubules. Recent data have revealed that the thale cress (Arabidopsis thaliana) contains a protein related to the p60 catalytic subunit of animal katanin, a microtubule-severing protein. However, effects of the plant p60 on microtubule assembly are not known.

View Article and Find Full Text PDF