Aromatase inhibitors (AIs) cause muscle weakness, bone loss, and joint pain in up to half of cancer patients. Preclinical studies have demonstrated that increased osteoclastic bone resorption can impair muscle contractility and prime the bone microenvironment to accelerate metastatic growth. We hypothesized that AI-induced bone loss could increase breast cancer progression in bone and exacerbate muscle weakness associated with bone metastases.
View Article and Find Full Text PDFMelanoma has a propensity to metastasize to bone, where it is exposed to high concentrations of transforming growth factor-beta (TGF-beta). Because TGF-beta promotes bone metastases from other solid tumors, such as breast cancer, we tested the role of TGF-beta in melanoma metastases to bone. 1205Lu melanoma cells, stably transfected to overexpress the natural TGF-beta/Smad signaling inhibitor Smad7, were studied in an experimental model of bone metastasis whereby tumor cells are inoculated into the left cardiac ventricle of nude mice.
View Article and Find Full Text PDFSupporting roles of stromal cells in preferential colonization of myeloma cells in bone marrow and development of associated osteoclastic osteolysis through cell-cell interactions have been indicated. Here we examined the effects of a monoclonal antibody to alpha4 integrin (anti-alpha4 Ab) that disrupts myeloma cell-stromal cell interactions mediated via alpha4beta1 integrin and vascular cell adhesion molecule-1 (VCAM-1) on myeloma cell growth in bone marrow and accompanying osteolysis. The anti-alpha4 Ab decreased VCAM-1-stimulated 5TGM1/luc cell growth in culture.
View Article and Find Full Text PDF