Nowadays low calcium fly ash-based geopolymer concrete can be replaced with cement-based concrete to avoid the adverse effect of manufacturing cement on the environment. Utilization of geopolymer concrete instead of traditional concrete using low calcium fly ash and nano silica reduces a significant amount of CO- emission towards the atmosphere. However, the performance of geopolymer concrete is less than that of Portland cement concrete.
View Article and Find Full Text PDFThe present investigation was aimed to explore the cadmium removal efficiency, mechanism and characterization of Chitosan biopolymers from cephalopods waste. The extracted chitosan has showed good yield of 32% and with high minerals, ash and moisture content. In the Fourier-transform infrared spectroscopy (FT-IR) analysis multiple active functional groups of Amine, Amine, Hydroxyl were found between 612 and 3424 cm and the sugar signals such as N-acetyl glucosamine (GlcNAc) and H-1 [GlcN (H-1D), GlcNAc (H-1A)] were identified in Chitosan by H Nuclear Magnetic Resonance (NMR).
View Article and Find Full Text PDFIn this study, the phytoremediation technology from marine source Dunaliella salina was chosen to eliminate fluoride ions from aqueous solution by Adsorption isotherm, Kinetics and RSM optimization methods. Marine microalgae were collected, identified and mass cultured then its physical characteristics, functional groups and surface microstructure was examined by FT-IR, NMR, XRD and SEM analysis also the same was performed on post treated bioadsorbent. Fluoride removal was optimized by different conditions through response surface methodology and kinetics modelling also performed.
View Article and Find Full Text PDF