Publications by authors named "Maryann Swain"

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated.

View Article and Find Full Text PDF

The measurement of mitochondrial function has become imperative to understand and characterize diseases characterized by bioenergetic alterations. The advancement of automation and application of high-throughput technologies has propelled our understanding of biological complexity and facilitated drug discovery. Seahorse extracellular flux (XF) technology measures changes in dissolved oxygen and proton concentration in cell culture media, providing kinetic measurements of oxidative phosphorylation and glycolytic metabolism.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive decline. In hippocampal neurons, the pathological features of AD include the accumulation of extracellular amyloid-beta peptide (Aβ) accompanied by oxidative stress, mitochondrial dysfunction, and neuron loss. A decrease in neuroprotective Protein Kinase A (PKA) signaling contributes to mitochondrial fragmentation and neurodegeneration in AD.

View Article and Find Full Text PDF