Understanding and controlling the electrical properties of solution-processed 2D materials is key to further printed electronics progress. Here, we demonstrate that the thermolysis of the aromatic intercalants utilized in nanosheet exfoliation for graphene laminates allows for high intrinsic mobility and the simultaneous control of doping type (- and -) and concentration over a wide range. We establish that the intraflake mobility is high by observing a linear magnetoresistance of such solution-processed graphene laminates and using it to devolve the interflake tunneling and intralayer magnetotransport.
View Article and Find Full Text PDF