Background: Animal models of human inflammatory diseases have limited predictive quality for human clinical trials for various reasons including species specific activation mechanisms and the immunological background of the animals which markedly differs from the genetically heterogeneous and often aged patient population.
Objective: Development of an animal model allowing for testing therapeutics targeting pathways involved in the development of Atopic Dermatitis (AD) with better translatability to the patient.
Methods: NOD-scid IL2R γnull mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from AD and healthy volunteers were treated with IL-4 and the antagonistic IL-4 variant R121/Y124D (Pitrakinra).
Animal models mimicking human diseases have been used extensively to study the pathogenesis of autoimmune diseases and the efficacy of potential therapeutics. They are, however, limited with regard to their similarity to the human disease and cannot be used if the antagonist and its cognate receptor require high similarity in structure or binding. Here, we examine the induction of oxazolone-mediated features of atopic dermatitis (AD) in NOD-scid IL2Rγ(null) mice engrafted with human peripheral blood mononuclear cells (PBMC).
View Article and Find Full Text PDFWe report the genomic DNA sequence of a single chromosome (linkage group 22; LG22) of the small teleost fish medaka (Oryzias latipes) as a first whole chromosome sequence from a non-mammalian vertebrate. The order and orientation of 633 protein-coding genes were deduced from 18,803,338 bp of DNA sequence, providing the opportunity to analyze chromosome evolution of vertebrate genomes by direct comparison with the human genome. The average number of genes in the "conserved gene cluster" (CGC), a strict definition of "synteny" at the sequence basis, between medaka and human was 1.
View Article and Find Full Text PDFIn order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping.
View Article and Find Full Text PDF