The thermostability of vaccines, particularly enveloped viral vectored vaccines, remains a challenge to their delivery wherever needed. The freeze-drying of viral vectored vaccines is a promising approach but remains challenging due to the water removal process from the outer and inner parts of the virus. In the case of enveloped viruses, freeze-drying induces increased stress on the envelope, which often leads to the inactivation of the virus.
View Article and Find Full Text PDFRecent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool.
View Article and Find Full Text PDF