Phosphatidylinositols and their phosphorylated derivatives, known as phosphoinositides, are crucial in cellular processes, with their abnormalities linked to various diseases. Thus, identifying and measuring phosphoinositide levels in tissues are crucial for understanding their contributions to cellular processes and disease development. One powerful technique for mapping the spatial distribution of molecules in biological samples is matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI).
View Article and Find Full Text PDFRationale: Sublimation is a solvent-free technique used to apply a uniform matrix coating over a large sample plate, improving the matrix's purity and enhancing the analyte signal. Although the 5-chloro-2-mercaptobenzothiazole (CMBT) matrix was introduced years ago, there are no reports of its application via sublimation. We investigated the experimental parameters that are optimal for CMBT matrix sublimation on mouse kidney samples.
View Article and Find Full Text PDFQuantitative trait loci (QTLs) E and M are major soybean alleles that confer resistance to leaf-chewing insects, and are particularly effective in combination. Flavonoids and/or isoflavonoids are classes of plant secondary metabolites that previous studies agree are the causative agents of resistance of these QTLs. However, all previous studies have compared soybean genotypes that are of dissimilar genetic backgrounds, leaving it questionable what metabolites are a result of the QTL rather than the genetic background.
View Article and Find Full Text PDFRecently in Canada and some states of the United States, marijuana (cannabis) has become fully legalized and regulated, for both medical and recreational purposes. This fact is going to make cannabis products such as edibles even more popular than ever before. Therefore, it is assumed that there will be a high demand for analytical methods, which are accurate and sensitive enough to be used in different forensic and pharmaceutical cannabis-related applications.
View Article and Find Full Text PDFAmbient mass spectrometry (AMS)-based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics.
View Article and Find Full Text PDF