Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk.
View Article and Find Full Text PDFOver the past decades, stem cell therapy has been investigated as a promising approach towards various diseases, including neurodegenerative disorders. Stem cells show the capability to differentiate into neuronal progenitor cells in vitro. In the present study, the differentiation potential of human-induced pluripotent stem cells (hiPSCs) into neural lineages was examined under the efficient induction media containing forskolin and 3-isobutyl-1-methyl-xanthine (IBMX) in the presence of nisin (Ni), non-essential amino acids (NEAA) and combination of those (NEAA-Ni) in vitro.
View Article and Find Full Text PDFPromising cell sources for tissue engineering comprise bone marrow derived-mesenchymal stem cells (BM-MSCs) that have multiple differentiation potentials. Also, sex hormones act as important elements in bone development and maintenance, and the roles of two female sex steroid hormones known as estrogen (17-β estradiol) and progesterone in osteogenic differentiation of human BM-MSCs (hBM-MSCs) are studied. For this purpose, hBM-MSCs were treated with a 1 × 10 M concentration of 17-β estradiol and progesterone separately and simultaneously while the optimum concentrations were obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFBone regeneration is a significant and crucial health issue worldwide. Tissue bioengineering has shown itself to be the best substitute for common clinical treatment of bone loss. The suitable cell source is human endometrial stem cells (hEnSCs) which have several suitable characteristics for this approach.
View Article and Find Full Text PDF