Raman enhancement techniques are essential for gas analysis to increase the detection sensitivity of a Raman spectroscopy system. We have developed an efficient Raman enhancement technique called the collision-enhanced Raman scattering (CERS), where the active Raman gas as the analyte is mixed with a buffer gas inside the hollow-core photonic-crystal fiber (HCPCF) of a fiber-enhanced Raman spectroscopy (FERS) system. This results in an enhanced Raman signal from the analyte gas.
View Article and Find Full Text PDFWe previously developed a hollow-core photonic crystal fiber (HCPCF) based Raman scattering enhancement technique for gas/human breath analysis. It enhances photon-gas molecule interactions significantly but is still based on CW laser excitation spontaneous Raman scattering, which is a low-probability phenomenon. In this work, we explored nanosecond/sub-nanosecond pulsed laser excitation in HCPCF based fiber enhanced Raman spectroscopy (FERS) and successfully induced stimulated Raman scattering (SRS) enhancement.
View Article and Find Full Text PDFPurpose: The goal of this study was to investigate the performance of a pre-clinical SPECT/PET/CT system for Re imaging.
Methods: Phantom experiments were performed aiming to assess the characteristics of two multi-pinhole collimators: ultra-high resolution collimator (UHRC) and high-energy ultra high resolution collimator (HE-URHC) for imaging Re. The spatial resolution, image contrast and contrast-to-noise ratio (CNR) were investigated using micro-Jaszczak phantoms.
Unlabelled: PET imaging of rodents is increasingly used in preclinical research, but its utility is limited by spatial resolution and signal-to-noise ratio of the images. A recently developed preclinical PET system uses a clustered-pinhole collimator, enabling high-resolution, simultaneous imaging of PET and SPECT tracers. Pinhole collimation strongly departs from traditional electronic collimation achieved via coincidence detection in PET.
View Article and Find Full Text PDFIntroduction: Reliable quantification in positron emission tomography (PET) requires accurate attenuation correction of emission data, which in turn entails accurate determination of the attenuation map (µ-map) of the object under study. One of the main steps involved in CT-based attenuation correction (CTAC) is energy-mapping, or the conversion of linear attenuation coefficients (µ) calculated at the effective CT energy to those corresponding to 511 keV.
Materials And Methods: The aim of this study is to compare different energy-mapping techniques including scaling, segmentation, the hybrid method, the bilinear calibration curve technique and the dual-energy approach to generate the µ-maps required for attenuation correction.