Publications by authors named "Maryam Samani"

Soil contamination with heavy metals presents a substantial environmental peril, necessitating the exploration of innovative remediation approaches. This research aimed to investigate the efficiency of nano-silica in stabilizing heavy metals in a calcareous heavy metal-contaminated soil. The soil was treated with five nano-silica levels of 0, 100, 200, 500, and 1000 mg/kg and incubated for two months.

View Article and Find Full Text PDF

Background: Soil contamination with heavy metals poses a significant threat to plant health and human well-being. This study explores the potential of nano silica as a solution for mitigating heavy metal uptake in Calendula officinalis.

Results: Greenhouse experiments demonstrated, 1000 mg•kg nano silica caused a 6% increase in soil pH compared to the control treatment.

View Article and Find Full Text PDF

Background: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals.

View Article and Find Full Text PDF