Purpose: To assess the feasibility of using the diaphragm as a surrogate for liver targets during MDTT.
Methods: Diaphragm as surrogate for markers: a dome-shaped phantom with implanted markers was fabricated and underwent dual-orthogonal fluoroscopy sequences on the Vero4DRT linac. Ten patients participated in an IRB-approved, feasibility study to assess the MDTT workflow.
Purpose And Aim: The Vero4DRT (Brainlab AG) linear accelerator is capable of dynamic tumor tracking (DTT) by panning/tilting the radiation beam to follow respiratory-induced tumor motion in real time. In this study, the panning/tilting motion is modeled in Monte Carlo (MC) for quality assurance (QA) of four-dimensional (4D) dose distributions created within the treatment planning system (TPS).
Materials And Methods: Step-and-shoot intensity-modulated radiation therapy plans were optimized for 10 previously treated liver patients.
Purpose: To assess dynamic tumor tracking (DTT) target localization uncertainty for in-vivo marker-based stereotactic ablative radiotherapy (SABR) treatments of the liver using electronic-portal-imaging-device (EPID) images. The Planning Target Volume (PTV) margin contribution for DTT is estimated.
Methods: Phantom and patient EPID images were acquired during non-coplanar 3DCRT-DTT delivered on a Vero4DRT linac.
The commissioning and benchmark of a Monte Carlo (MC) model of the 6-MV Brainlab-Mitsubishi Vero4DRT linear accelerator for the purpose of quality assurance of clinical dynamic wave arc (DWA) treatment plans is reported. Open-source MC applications based on EGSnrc particle transport codes are used to simulate the medical linear accelerator head components. Complex radiotherapy irradiations can be simulated in a single MC run using a shared library format combined with BEAMnrc "source20.
View Article and Find Full Text PDF