Publications by authors named "Maryam R Al Shehhi"

Bathymetric mapping of the coastal area is essential for coastal development and management. However, conventional bathymetric measurement in coastal areas is resource-expensive and under many constraints. Various research have been conducted to improve the efficiency or effectiveness of bathymetric estimations.

View Article and Find Full Text PDF

Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.

View Article and Find Full Text PDF

This study demonstrates the vertical and horizontal distribution of nutrients and the seasonal response of nutrients to upwelling in the Arabian Gulf and the Sea of Oman. Thus, monthly data on nitrate, phosphate, and silicate are obtained from the World Ocean Atlas 2018 (WOA), as well as estimates of coastal and curl driven upwelling in both regions. The results of the study indicate that the Sea of Oman's surface and deep waters contained higher concentrations of nutrients than the Arabian Gulf by 80%.

View Article and Find Full Text PDF

Mapping of Chlorophyll-a (Chl-a) over the coastal waters of the Arabian Gulf and the Sea of Oman using the satellite-based observations, such as MODIS (Moderate Resolution Imaging Spectro-radiometer), has shown inferior performance (Chl-a overestimation) than that of deep waters. Studies in the region have shown that this poor performance is due to three reasons: (i) water turbidity (sediments re-suspension), and the presence of colored dissolved organic matter (CDOM), (ii) bottom reflectance and (iii) incapability of the existing atmospheric correction models to reduce the effect of the aerosols from the water leaving radiance. Therefore, this work focuses on investigating the sensitivity of the in situ spectral signatures of these coastal waters to the algal (chlorophyll: Chl-a), non-algal (sediments and CDOM) and the bottom reflectance properties, in absence of contributions from the atmosphere.

View Article and Find Full Text PDF

In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast.

View Article and Find Full Text PDF

Harmful algae blooms (HABs), often composed of oceanic plants called phytoplankton, are potentially harmful to the marine life, water quality, human health, and desalination plants, a chief source of potable water in the Arabian Gulf. The last decade has seen a noticeable increase in the frequency of HAB outbreaks in the Arabian Seas. This increase is mainly caused by the unprecedented economic growth in the region.

View Article and Find Full Text PDF