Publications by authors named "Maryam Moradi-Chaleshtori"

Background: The epithelial-mesenchymal transition (EMT) and angiogenesis are morphogenetic processes implicated in tumor invasion and metastasis. It is found that the aberrant expression of microRNAs (miRNAs) contributes to these processes. Exosomes are considered potential natural vehicles for miRNA delivery in cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • M2 macrophages are common in tumors, and converting them to M1 types may help treat cancer.
  • Researchers studied how tumor-derived exosomes affect this conversion, using rapamycin on triple-negative breast cancer cells.
  • Results showed that rapamycin-texosomes promoted M1 marker expression and increased functions like nitric oxide production and phagocytosis, supporting their potential use in cancer immunotherapy.
View Article and Find Full Text PDF

M2 macrophages, the major component of tumor microenvironment, are recognized as important player in tumor progression. M2 macrophages mediate this effect by promoting tumor angiogenesis, tumor metastasis, and suppression of tumor immunity. Reprogramming of M2 macrophages can serve as a promising strategy in cancer immunotherapy.

View Article and Find Full Text PDF

Aims: Macrophage repolarization from M1 to M2 phenotype is one of the hallmarks of malignancy. M2 macrophages are the most represented population in the tumor microenvironment and play an active role in tumor progression. In recent years, microRNAs (miRNAs) have been identified as a regulator of macrophage polarization.

View Article and Find Full Text PDF

Macrophages are the most abundant tumor-infiltrating immune cells. Macrophages are conventionally classified as M1 or M2 types. M2 type is the dominant phenotype of macrophages in the tumor microenvironment.

View Article and Find Full Text PDF

In the tumor microenvironment, macrophages polarize into the M2 phenotype to facilitate tumorigenesis. Tumor-derived exosomes can act as mediators between the tumor microenvironment and stromal cells by transporting proteins, mRNAs, and miRNAs. Exosomal miRNAs play a pivotal role in modulating tumor microenvironment and macrophage polarization.

View Article and Find Full Text PDF

Tumor cells are able to modify their surrounding microenvironment by transmitting bioactive molecules via exosomes. In exosomes, proteins and nucleic acids that can be taken up by surrounding cells have been identified and modulate their functions. Tumor microenvironment consists of different cells such as macrophages.

View Article and Find Full Text PDF

A small supernumerary marker chromosome (sSMC) is a structurally abnormal chromosome. It is an additional chromosome smaller than one chromosome most often lacking a distinct banding pattern and is rarely identifiable by conventional banding cytogenetic analysis. The origin and composition of an sSMC is recognizable by molecular cytogenetic analysis.

View Article and Find Full Text PDF