Publications by authors named "Maryam Karimi-Jafari"

The mechanochemical synthesis of cocrystals has been introduced as a promising approach of formulating poorly water-soluble active pharmaceutical ingredients (APIs). In this study, hot-melt extrusion (HME) as a continuous process and grinding and ball milling as batch processes were employed to explore the feasibility of cocrystallization. Ciprofloxacin (CIP) and isonicotinic acid (INCA) were selected as the model API and coformer.

View Article and Find Full Text PDF

The application of in-line Raman spectroscopy to monitor the formation of a 1:1 cocrystal of ibuprofen (IBU) as a BCS class II drug and nicotinamide as coformer using hot-melt extrusion (HME) was investigated. The process was monitored over different experimental conditions inserting the Raman probe before the extruder die. Partial least square (PLS) was applied as a robust chemometric technique to build predictive models at different levels of chemometric by dividing the experimental data set into calibration and validation subsets.

View Article and Find Full Text PDF

Pharmaceutical cocrystals have gained increasing interest due to their potential to modify the physicochemical properties of drugs. Herein, a 1:1 cocrystal of ibuprofen (IBU) as a BCS class II active pharmaceutical ingredient (API) and nicotinamide as coformer was produced using a hot-melt extrusion (HME) process. The effect of process parameters such as barrel temperature and screw speed were studied.

View Article and Find Full Text PDF