Interstrand DNA-DNA cross-links (ICLs) are generated by endogenous processes, drugs, and environmental toxins. Understanding the cellular pathways by which various ICLs are repaired is critical to understanding their biological effects. Recent studies showed that replication-dependent repair of an ICL derived from the reaction of an abasic (AP) site with an adenine residue (dA) on the opposing strand of duplex DNA proceeds via a novel mechanism in which the DNA glycosylase NEIL3 unhooks the ICL.
View Article and Find Full Text PDFCovalent reactions are used in the detection of various biological analytes ranging from low molecular weight metabolites to protein-protein complexes. The detection of specific nucleic acid sequences is important in molecular biology and medicine but covalent approaches are less common in this field, in part, due to a deficit of simple and reliable reactions for the covalent capture of target sequences. Covalent anchoring can prevent the denaturation (melting) of probe-target complexes and causes signal degradation in typical hybridization-based assays.
View Article and Find Full Text PDFEfficient methods for the site-specific installation of structurally defined interstrand cross-links in duplex DNA may be useful in a wide variety of fields. The work described here developed a high-yield synthesis of chemically stable interstrand cross-links resulting from a reductive amination reaction between an abasic site and the noncanonical nucleobase 2-aminopurine in duplex DNA. Results from footprinting, liquid chromatography-mass spectrometry, and stability studies support the formation of an -alkylamine attachment between the 2-aminopurine residue and the Ap site.
View Article and Find Full Text PDFMethods for the preparation of DNA duplexes containing interstrand covalent cross-links may facilitate research in the fields of biochemistry, molecular biology, nanotechnology, and materials science. Here we report methods for the synthesis and isolation of DNA duplexes containing a site-specific, chemically stable, reduced covalent interstrand cross-link between a guanine residue and an abasic site. The method uses experimental techniques and equipment that are common in most biochemical laboratories and inexpensive, commercially available oligonucleotides and reagents.
View Article and Find Full Text PDFMany strategies for the detection of nucleic acid sequence rely upon Watson-Crick hybridization of a probe strand to the target strand, but the reversible nature of nucleic acid hybridization presents an inherent challenge: short probes that provide high target specificity have relatively low target affinity resulting in signal losses. Sequence-specific covalent cross-linking reactions have the potential to provide both selective target capture and durable signal. We explore a novel approach involving sequence-specific covalent cross-linking of a probe to target DNA combined with single-molecule nanopore detection of the cross-linked DNA.
View Article and Find Full Text PDFIt may be useful to develop prodrugs that are selectively activated by oxidative stress in cancer cells to release cell-killing reactive intermediates. However, relatively few chemical strategies exist for the activation of prodrugs under conditions of oxidative stress. Here we provide evidence for a novel process in which oxidation of a thiol residue in the natural product leinamycin E1 by HO and other byproducts of cellular oxidative stress initiates generation of an episulfonium ion that selectively alkylates guanine residues in duplex DNA.
View Article and Find Full Text PDFHybridization-based methods for the detection of nucleic acid sequences are important in research and medicine. Short probes provide sequence specificity, but do not always provide a durable signal. Sequence-specific covalent crosslink formation can anchor probes to target DNA and might also provide an additional layer of target selectivity.
View Article and Find Full Text PDFInterstrand DNA-DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are "unhooked" by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination.
View Article and Find Full Text PDFNitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity.
View Article and Find Full Text PDFArch Biochem Biophys
April 2016
Peroxynitrite has been implicated in type 2 diabetes and diabetic complications. As a follow-up study to our previous work on SR-135 (Arch Biochem Biophys 577-578: 49-59, 2015), we provide evidence that this series of compounds are effective when administered orally, and their mechanisms of actions extend to the peripheral tissues. A more soluble analogue of SR-135, SR-110 (from a new class of Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes) was orally administered for 2 weeks to B6D2F1 mice fed a high fat-diet (HFD).
View Article and Find Full Text PDFPeroxynitrite has been implicated in β-cell dysfunction and insulin resistance in obesity. Chemical catalysts that destroy peroxynitrite, therefore, may have therapeutic value for treating type 2 diabetes. To this end, we have recently demonstrated that Mn(III) bis(hydroxyphenyl)-dipyrromethene complexes, SR-135 and its analogs, can effectively catalyze the decomposition of peroxynitrite in vitro and in vivo through a 2-electron mechanism (Rausaria et al.
View Article and Find Full Text PDF