Wiley Interdiscip Rev Nanomed Nanobiotechnol
May 2024
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology.
View Article and Find Full Text PDFBacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB).
View Article and Find Full Text PDFSilver sulfide nanoparticles (AgS-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm AgS-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP).
View Article and Find Full Text PDFExtensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity.
View Article and Find Full Text PDFSilver sulfide nanoparticles (Ag S-NP) have been proposed for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA) and photothermal therapy (PTT). However, their absorbance is relatively low in the NIR window used in these applications, and previous formulations were synthesized using toxic precursors under harsh conditions and have clearance issues due to their large size. Herein, we synthesized sub-5 nm Ag S-NP and encapsulated them in biodegradable, polymeric nanoparticles (AgPCPP).
View Article and Find Full Text PDFBiofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within.
View Article and Find Full Text PDFExtensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. Here, we use Dynamic Light Scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity.
View Article and Find Full Text PDFPeri-implantitis is characterized by chronic inflammation of the peri-implant supporting tissues that progressively and irreversibly leads to bone loss and, consequently, implant loss. Similar to periodontal disease, oral dysbiosis is thought to be a driver of peri-implantitis. However, managing peri-implantitis with traditional treatment methods, such as nonsurgical debridement or surgery, is not always successful.
View Article and Find Full Text PDFChronic wounds infected by Pseudomonas aeruginosa (Pa) are characterized by disease progression and increased mortality. We reveal Pf, a bacteriophage produced by Pa that delays healing of chronically infected wounds in human subjects and animal models of disease. Interestingly, impairment of wound closure by Pf is independent of its effects on Pa pathogenesis.
View Article and Find Full Text PDFHuman dental caries is an intractable biofilm-associated disease caused by microbial interactions and dietary sugars on the host's teeth. Commensal bacteria help control opportunistic pathogens via bioactive products such as hydrogen peroxide (HO). However, high-sugar consumption disrupts homeostasis and promotes pathogen accumulation in acidic biofilms that cause tooth-decay.
View Article and Find Full Text PDFComputed tomography (CT) is an X-ray-based medical imaging technique commonly used for noninvasive gastrointestinal tract (GIT) imaging. Iodine- and barium-based CT contrast agents are used in the clinic for GIT imaging; however, inflammatory bowel disease (IBD) imaging is challenging since iodinated and barium-based CT agents are not specific for sites of inflammation. Cerium oxide nanoparticles (CeNP) can produce strong X-ray attenuation due to cerium's k-edge at 40.
View Article and Find Full Text PDFComputed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest.
View Article and Find Full Text PDFNanostructures have potential for use in biomedical applications such as sensing, imaging, therapeutics, and drug delivery. Among nanomaterials, gold nanostructures are of considerable interest for biomedical research, owing to their bio-inertness, controllable surface chemistry, X-ray opacity, and optical properties. Gold nanocages are particularly attractive for imaging and therapeutic applications, because they strongly absorb light in the near infra-red region which has high light transmission in tissue.
View Article and Find Full Text PDFDesign of electronic materials with high stretchability is of great importance for realizing soft and conformal electronics. One strategy of realizing stretchable metals and semiconductors is to exploit the buckling of materials bonded to elastomers. However, the level of stretchability is often limited by the cracking and fragmentation of the materials that occurs when constrained buckling occurs while bonded to the substrate.
View Article and Find Full Text PDFModern technologically driven societies could not exist in their current form if it were not for a great many synthetic achievements reliant on solution-based chemistry and substrate-based processing techniques. It is, hence, not surprising that these same materials preparation techniques have given rise to an impressive list of functional nanomaterials including those derived from noble metals, a class of materials renowned for their extraordinary optical and catalytic properties. Acting as the foundation for substrate-based processing is a collection of techniques such as physical and chemical vapor deposition, epitaxy, self- and directed assembly, and a host of lithographic methods.
View Article and Find Full Text PDFEarlier detection of breast cancer reduces mortality from this disease. As a result, the development of better screening techniques is a topic of intense interest. Contrast-enhanced dual-energy mammography (DEM) is a novel technique that has improved sensitivity for cancer detection.
View Article and Find Full Text PDFSeed-mediated syntheses utilizing facet-selective surface passivation provide the necessary chemical controls to direct noble metal nanostructure formation to a predetermined geometry. The foremost protocol for the synthesis of (111)-faceted Ag octahedra involves the reduction of metal ions onto pre-existing seeds in the presence of citrate and ascorbic acid. It is generally accepted that the capping of (111) facets with citrate dictates the shape while ascorbic acid acts solely as the reducing agent.
View Article and Find Full Text PDFGalvanic replacement reactions carried out on solid core-shell structures typically yield a noble metal nanorattle geometry in which a mobile core is contained within a hollowed shell. Here, we adapt this colloidal synthesis to substrate-based structures to obtain a fundamentally altered product in which an immobilized core is separated from the shell by a well-defined gap, an architecture unobtainable using colloidal techniques and that offers unique advantages in terms of generating plasmonic near-field effects within the confines of a single structure. In the devised route, Wulff-shaped templates of Au, Pt, or Pd, formed through the dewetting of ultrathin films, are first transformed into core-shell structures through the reduction of Ag(+) ions onto their surface and then further transformed through the galvanic replacement of Ag with Au.
View Article and Find Full Text PDF