Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs.
View Article and Find Full Text PDFColorectal Cancer (CRC) is a significant global health issue, being the third most common cancer worldwide and the second most frequent cause of cancerrelated deaths. It occurs when cells in the colon or rectum grow uncontrollably, often developing from precancerous polyps. Genetic predisposition and environmental factors, such as diet and lifestyle, contribute to the disease.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects.
View Article and Find Full Text PDFOvarian cancer (OC) is a gynecologic disease characterized by the uncontrolled growth and proliferation of abnormal cells in the ovaries, fallopian tubes, or peritoneum. Emerging evidence has shown the pivotal role of non-coding RNAs (ncRNAs), such as miRNAs, in driving the pathogenesis of OC. miRNAs are recognized as small ncRNAs that play critical roles in regulating gene expression in normal development and in disease states, including OC.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response.
View Article and Find Full Text PDFBreast cancer is a prevalent and aggressive disease characterized by high metastasis, recurrence, and mortality rates. While cisplatin is an effective chemotherapy drug, its use is limited by its toxic effects on the body. Despite advancements in therapeutic strategies, the therapeutic response is often unsatisfactory due to drug resistance, leading to poor prognosis.
View Article and Find Full Text PDFThyroid cancer is the most prevalent form of endocrine cancer. Therefore, the administration of new therapeutic agents for thyroid cancer patients is necessary. One of the recent successes in thyroid cancer research is the identification of the role of signaling pathways in the pathogenesis of the disease.
View Article and Find Full Text PDFEndometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation.
View Article and Find Full Text PDFDental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue.
View Article and Find Full Text PDFThe oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have emerged as crucial regulators of gene expression, playing pivotal roles in various biological processes, including cancer development and progression. Among them, miR-125b has garnered significant attention due to its multifaceted functional roles in human hepatocellular carcinoma (HCC). Extensive research has revealed that miR-125b plays a dual role in HCC, acting as both a tumor suppressor and an oncogene depending on the context.
View Article and Find Full Text PDFBiomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors.
View Article and Find Full Text PDFA disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women.
View Article and Find Full Text PDFProstate cancer (PCa) is the second prevalent cancer in men. Recent studies have highlighted the critical role of prostate cancer stem cells (PCSCs) in driving tumor initiation and metastasis of the prostate tissue. PCSCs are a rare population of cells in the prostate that possess self-renewal and differentiation capabilities, making them a potential therapeutic target for effective PCa treatment.
View Article and Find Full Text PDFLong non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs.
View Article and Find Full Text PDFRenal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC.
View Article and Find Full Text PDFIschemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets.
View Article and Find Full Text PDFIt is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are non-protein coding transcripts that are longer than 200 nucleotides in length. LncRNAs are implicated in gene expression at the transcriptional, translational, and epigenetic levels, and thereby impact different cellular processes including cell proliferation, migration, apoptosis, angiogenesis, and immune response. In recent years, numerous studies have demonstrated the significant contribution of lncRNAs to the pathogenesis and progression of various diseases, such as stroke, heart disease, and cancer.
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes.
View Article and Find Full Text PDFmeat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance.
View Article and Find Full Text PDFLeukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3.
View Article and Find Full Text PDF