Publications by authors named "Maryam Elfeki"

Environmental microorganisms continue to serve as a major source of bioactive natural products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to collect samples from the environment. Despite the importance of these expeditions in the search for new drugs, few studies have attempted to document the extent to which NPs or their corresponding production genes are distributed within a given environment.

View Article and Find Full Text PDF

Despite decades of cultivating microorganisms for use in drug discovery, few attempts have been made to measure the extent to which common cultivation techniques have accessed existing chemical space. Metagenomic studies have shown that cultivable bacteria represent a fraction of those that exist in the environment, and that uncultivated populations in sediment have genes that encode for a high diversity of novel natural product (NP) biosynthetic enzymes. Quantifying these genes in both sediment and cultivatable bacterial populations allows us to assess how much diversity is present on nutrient agar and is critical to guiding the trajectory of future NP discovery platforms.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs) that are disseminated into the environment via effluent. However, few studies have compared abundance, mobilization and selective pressures for ARGs in WWTPs as a function of variations in secondary treatment bioprocesses. We used shotgun metagenomics to provide a comprehensive analysis of ARG composition, relationship to mobile genetic elements and co-occurrences with antibiotic production genes (APGs) throughout two full-scale municipal WWTPs, one of which employs biofilm-based secondary treatment and another that uses a suspended growth system.

View Article and Find Full Text PDF

The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.

View Article and Find Full Text PDF