Publications by authors named "Maryam Dibaei"

Introduction: The presence of phytochemicals in herbal medicines can lead to herb-drug interactions, altering the levels of these compounds and conventional drugs in the bloodstream by influencing CYP450 activity. Considering curcumin's effect on the CYP enzymes responsible for tramadol metabolism, it is essential to assess the potential interaction between curcumin and tramadol when administered together.

Materials And Methods: The pharmacokinetics of tramadol were examined in rats receiving either single or multiple doses of curcumin (80 mg/kg) compared to rats without curcumin treatment.

View Article and Find Full Text PDF

Curcumin, a bioactive component with multiple characteristics, has been shown to have many therapeutic effects. However, there are several limitations regarding the use of curcumin such as instability, low solubility, poor bioavailability, and rapid elimination. Different approaches have been used to solve these problems.

View Article and Find Full Text PDF

Multiple sclerosis, which is characterized by inflammation and neurodegeneration, is considered a chronic disease of the central nervous system. Given the lack of pharmacokinetic evaluation of teriflunomide in the Iranian context, the present 2-way crossover study aimed to assess the pharmacokinetic properties and bioequivalence of 2 teriflunomide formulations. To this end, 2 single-dose generic and branded teriflunomide formulations were orally administered to 14 healthy Iranian male volunteers.

View Article and Find Full Text PDF

Curcumin is a multitherapeutic agent with great therapeutic potential in central nervous system (CNS) diseases. In the current study, curcumin was encapsulated in solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the purpose of increasing brain accumulation. The preparation processes have been optimized using experimental design and multiobjective optimization methods.

View Article and Find Full Text PDF

Theranostics with the ability to simultaneous monitoring of treatment progress and controlled delivery of therapeutic agents has become as an emerging therapeutic paradigm in cancer therapy. In this study, we have developed a novel surface functionalized iron oxide nanoparticle using polyethyleneimine and glutathione for targeted curcumin (CUR) delivery and acceptable pH sensitive character. The developed magnetic nanoparticles (MNPs) were physicochemically characterized by FT-IR, XRD, FE-SEM and TEM.

View Article and Find Full Text PDF