Orange peels are an abundant food waste stream that can be converted into useful products, such as polyhydroxyalkanoates (PHAs). Limonene, however, is a key barrier to building a successful biopolymer synthesis from orange peels as it inhibits microbial growth. We designed a one-pot oxidation system that releases the sugars from orange peels while eliminating limonene through superoxide (O) generated from potassium superoxide (KO).
View Article and Find Full Text PDFBioresour Technol
February 2023
As sustainability gains increasing importance in addition to cost-effectiveness as a criterion for evaluating engineering systems and practices, biological processes for lignocellulose pretreatment have attracted growing attention. Biological systems such as white and brown rot fungi and wood-consuming insects offer fascinating examples of processes and systems built by nature to effectively deconstruct plant cell walls under environmentally benign and energy-conservative environments. Research in the last decade has resulted in new knowledge that advanced the understanding of these systems, provided additional insights into these systems' functional mechanisms, and demonstrated various applications of these processes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2021
Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown.
View Article and Find Full Text PDFA major challenge in converting lignocellulose to biofuel is overcoming the resistance of the biomass structure. Herein, sequential dilute acid-alkali/aqueous ammonia treatment was evaluated to enhance enzymatic hydrolysis of poplar biomass by removing hemicellulose first and then removing lignin with acid and base, respectively. The results show that glucose release in sequential dilute acid-alkali treatments (61.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2020
Weak-base pretreatment of wheat straw was investigated for its ability to improve biomethane production. Anaerobic digestion (AD) was performed on wheat straw pretreated with 3%, 5%, or 7% NaCO as a weak base. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) spectra demonstrated disruption of lignocellulosic structures by pretreatment.
View Article and Find Full Text PDFWe have recently developed an enzyme-directed immunostimulant (EDI) prodrug motif, which is metabolized to active immunostimulant by cancer cells and, following drug efflux, activates nearby immune cells, resulting in immunogenicity. In this study, we synthesized several EDI prodrugs featuring an imidazoquinoline immunostimulant resiquimod (a Toll-like receptor 7/8 agonist) covalently modified with glycosidase enzyme-directing groups selected from substrates of β-glucuronidase, α-mannosidase, or β-galactosidase. We compared the glycosidase-dependent immunogenicity elicited by each EDI in RAW-Blue macrophages following conversion to active immunostimulant by complementary glycosidase.
View Article and Find Full Text PDFDysregulated vascular inflammation is the underlying cause of acute lung inflammation/injury (ALI). Bacterial infections and trauma cause ALI that may rapidly lead to acute respiratory distress syndrome (ARDS). There are no pharmacological therapies available to patients with ALI/ARDS, partially as drugs cannot specifically target the lungs.
View Article and Find Full Text PDF