Purpose: Size-specific dose estimate (SSDE) is a metric that adjusts CTDI to account for patient size. While not intended to be an estimate of organ dose, AAPM Report 204 notes the difference between the patient organ dose and SSDE is expected to be 10-20%. The purpose of this work was therefore to evaluate SSDE against estimates of organ dose obtained using Monte Carlo (MC) simulation techniques applied to routine exams across a wide range of patient sizes.
View Article and Find Full Text PDFPurpose: The purpose of this work was to estimate and compare breast and lung doses of chest CT scans using organ-based tube current modulation (OBTCM) to those from conventional, attenuation-based automatic tube current modulation (ATCM) across a range of patient sizes.
Methods: Thirty-four patients (17 females, 17 males) who underwent clinically indicated CT chest/abdomen/pelvis (CAP) examinations employing OBTCM were collected from two multi-detector row CT scanners. Patient size metric was assessed as water equivalent diameter (D ) taken at the center of the scan volume.
Purpose: Task Group Report 195 of the American Association of Physicists in Medicine contains reference datasets for the direct comparison of results among different Monte Carlo (MC) simulation tools for various aspects of imaging research that employs ionizing radiation. While useful for comparing and validating MC codes, that effort did not provide the information needed to compare absolute dose estimates from CT exams. Therefore, the purpose of this work is to extend those efforts by providing a reference dataset for benchmarking fetal dose derived from MC simulations of clinical CT exams.
View Article and Find Full Text PDFPurpose: The purpose of this work was to estimate scanner-independent CTDI -to-fetal-dose coefficients for tube current-modulated (TCM) and fixed tube current (FTC) computed tomography (CT) examinations of pregnant patients of various gestational ages undergoing abdominal/pelvic CT examinations.
Methods: For 24 pregnant patients of gestational age from <5 to 36 weeks who underwent clinically indicated CT examinations, voxelized models of maternal and fetal (or embryo) anatomy were created from abdominal/pelvic image data. Absolute fetal dose (D ) was estimated using Monte Carlo (MC) simulations of helical scans covering the abdomen and pelvis for TCM and FTC scans.
Purpose: The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable.
View Article and Find Full Text PDFImportance: Radiation doses for computed tomography (CT) vary substantially across institutions.
Objective: To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers.
Design, Setting, And Participants: In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers.
Purpose: Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed.
View Article and Find Full Text PDFObjective: The U.S. Centers for Medicare & Medicaid Services (CMS) recently approved the use of low-dose CT for lung cancer screening and described volumetric CT dose index (CTDI) requirements.
View Article and Find Full Text PDFAlthough there has been extensive research done on the biological response to doses of ionizing radiation relevant to radiodiagnostic procedures, very few studies have examined radiation schemes similar to those frequently utilized in CT exams. Instead of a single exposure, CT exams are often made up of a series of scans separated on the order of minutes. DNA damage dose-response kinetics after radiation doses and schemes similar to CT protocols were established in both cultured (ESW-WT3) and whole blood lymphocytes and compared to higher dose exposures.
View Article and Find Full Text PDFPurpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements.
Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters.
Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (DW). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams.
View Article and Find Full Text PDFPurpose: AAPM Task Group 204 introduced size-specific dose estimates for pediatric and adult patients undergoing body CT examinations. This investigation extends that work to head CT exams by using Monte Carlo simulations to develop size-specific, scanner-independent CTDIvol-to-organ-dose conversion coefficients.
Methods: Using eight patient models from the GSF family of voxelized phantoms, dose to the brain and lens of the eye was estimated using Monte Carlo simulations of contiguous axial and helical scans for 64-slice multidetector CT scanners from four major manufacturers.