In this work, the heterodimeric phospholipase A, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NH group of the sphingosine backbone of SM binds to Tyr22(C=O) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position.
View Article and Find Full Text PDF