Publications by authors named "Maryam Akhavan Tavakoli"

Low-level laser therapy (LLLT), also called Photobiomodulation, has gained widespread acceptance as a mainstream modality, particularly in the form of photobiostimulation (PBM). Here in our review, we aim to present the application of LLLT to help with depression, explore potential action mechanisms and pathways, discuss existing limitations, and address the challenges associated with its clinical implementation. In biological systems, the visible light with a wavelength range of 400-700 nm activates photoreceptors involved in vision and circadian rhythm regulation.

View Article and Find Full Text PDF

The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

The skin provides a dynamic barrier separating and protecting human body from the exterior world, and then immediate repair and rebuilding of the epidermal barrier is crucial after wound and injury. Wound healing without scars and complete regeneration of skin tissue still remain as a clinical challenge. The demand to engineer scaffolds that actively promote regeneration of damaged areas of the skin has been increased.

View Article and Find Full Text PDF

The skin wounds caused by insults should be treated immediately to restore the functions and integrity. Recent studies suggest that stem cells-based therapies may be applicable in wound healing. Newly defined menstrual blood-derived stem cells (MenSCs) show high rate of cell proliferation and trans-differentiation potency to various cell types.

View Article and Find Full Text PDF