Chem Commun (Camb)
December 2024
A design concept for porous hydrogel actuators is demonstrated, combining lower critical solution temperature (LCST)-type phase separation with crystallinity formation. In contrast to the existing methods of producing porous hydrogels, our concept could not only generate fast actuation speed, but also greatly enhance the hydrogel tensile strength and toughness.
View Article and Find Full Text PDFConstructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform.
View Article and Find Full Text PDFHydrogel actuators displaying programmable shape transformations are particularly attractive for integration into future soft robotics with safe human-machine interactions. However, these materials are still in their infancy, and many significant challenges remain presenting impediments to their practical implementation, including poor mechanical properties, slow actuation speed and limited actuation performance. In this review, we discuss the recent advances in hydrogel designs to address these critical limitations.
View Article and Find Full Text PDF