Placental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro.
View Article and Find Full Text PDFAngiogenesis is essential for the successful repair of tissues; however, in many chronic conditions, angiogenesis is inhibited. Placental tissues have been shown to illicit an angiogenic response both in vitro and in vivo, and the angiogenic properties of these tissues likely contribute to observed clinical outcomes. Although there is some work describing the angiogenic effects of these tissues, comparatively little has been done to determine the possible mechanisms responsible for this effect.
View Article and Find Full Text PDFThe purpose of this study is to characterise the composition of a dehydrated amnion and chorion graft and investigate how factors released from this graft interact with cells important to the wound microenvironment using in vitro models. Characterisation was completed by proteomic analysis of growth factors and cytokines, evaluation of matrix components and protease inhibition, immunohistochemistry, and in vitro release of key growth factors and cytokines. To evaluate the effect of released factors on cells found within the microenvironment, in vitro assays including: cell proliferation, migration, gene expression, protein production, and intracellular pathway activation were used; additionally, responses of fibroblasts in the context of inflammation were measured.
View Article and Find Full Text PDF