Publications by authors named "MaryLouisa Holton"

The genomic characteristics of human cytomegalovirus (HCMV) strains sequenced directly from clinical pathology samples were investigated, focusing on variation, multiple-strain infection, recombination, and gene loss. A total of 207 datasets generated in this and previous studies using target enrichment and high-throughput sequencing were analyzed, in the process enabling the determination of genome sequences for 91 strains. Key findings were that (i) it is important to monitor the quality of sequencing libraries in investigating variation; (ii) many recombinant strains have been transmitted during HCMV evolution, and some have apparently survived for thousands of years without further recombination; (iii) mutants with nonfunctional genes (pseudogenes) have been circulating and recombining for long periods and can cause congenital infection and resulting clinical sequelae; and (iv) intrahost variation in single-strain infections is much less than that in multiple-strain infections.

View Article and Find Full Text PDF

Cancer is caused by defects in the signalling mechanisms that govern cell proliferation and apoptosis. It is well known that calcium-dependent signalling pathways play a critical role in cell regulation. A tight control of calcium homeostasis by transporters and channel proteins is required to assure a proper functioning of the calcium-sensitive signal transduction pathways that regulate cell growth and apoptosis.

View Article and Find Full Text PDF

Aims: Nitric oxide (NO) plays a pivotal role in the regulation of cardiovascular physiology. Endothelial NO is mainly produced by the endothelial nitric oxide synthase (eNOS) enzyme. eNOS enzymatic activity is regulated at several levels, including Ca(2+)/calmodulin binding and the interaction of eNOS with associated proteins.

View Article and Find Full Text PDF

Plasma membrane calcium/calmodulin-dependent ATPases (PMCAs) are high affinity calcium pumps that extrude calcium from the cell. Emerging evidence suggests a novel role for PMCAs as regulators of calcium/calmodulin-dependent signal transduction pathways via interaction with specific partner proteins. In this work, we demonstrate that endogenous human PMCA2 and -4 both interact with the signal transduction phosphatase, calcineurin, whereas, no interaction was detected with PMCA1.

View Article and Find Full Text PDF