Publications by authors named "Mary-Louise Risher"

Adolescence is a transitional stage marked by continued brain development. This period is accompanied by physical and neurochemical modifications in the shape and function of the hippocampus, prefrontal cortex, and other limbic system structures. Brain maturation during adolescence, which is typically governed by intrinsic factors, can be dramatically altered by environmental influences such as drugs and alcohol.

View Article and Find Full Text PDF

Adolescence is a developmental period that encompasses, but is not limited to, puberty and continues into early adulthood. During this period, maturation and refinement are observed across brain regions such as the prefrontal cortex (PFC), which is critical for cognitive function. Adolescence is also a time when excessive alcohol consumption in the form of binge drinking peaks, increasing the risk of long-term cognitive deficits and the risk of developing an alcohol use disorder later in life.

View Article and Find Full Text PDF

Adolescence is characterized as a period of increased social behavior, risk taking, and novelty seeking, partly due to ongoing maturation in critical brain areas and the hypothalamic-pituitary-adrenal (HPA) negative-feedback system. During this period there is heightened vulnerability to stress that can drive neuro-immune-endocrine remodeling, resulting in the emergence of maladaptive behaviors that increase susceptibility to alcohol and substance abuse. Here we used a rat model to investigate the impact of chronic adolescent unpredictable stress on a battery of behavioral measures to assess anxiety, novelty seeking, risk taking, depression, and voluntary ethanol consumption while determining whether the PPARγ agonist rosiglitazone can attenuate these effects.

View Article and Find Full Text PDF

Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms.

View Article and Find Full Text PDF

Astrocytes have critical functions throughout the central nervous system (CNS) and have emerged as regulators of synaptic development and function. With their highly complex morphologies, they are able to interact with thousands of synapses via peripheral astrocytic processes (PAPs), ensheathing neuronal axons and dendrites to form the tripartite synapse. In this way, astrocytes engage in crosstalk with neurons to mediate a variety of CNS processes including the regulation of extracellular matrix protein signaling, formation and maintenance of the blood-brain barrier (BBB), axon growth and guidance, homeostasis of the synaptic microenvironment, synaptogenesis, and the promotion of synaptic diversity.

View Article and Find Full Text PDF

It is well established that astrocytes play pivotal roles in neuronal synapse formation and maturation as well as in the modulation of synaptic transmission. Despite their general importance for brain function, relatively little is known about the maturation of astrocytes during normal postnatal development, especially during adolescence, and how that maturation may influence astroglial-synaptic contact. The medial prefrontal cortex (mPFC) and dorsal hippocampus (dHipp) are critical for executive function, memory, and their effective integration.

View Article and Find Full Text PDF

Adolescence is a period of development in neural circuits that are critical for adult functioning. There is a relationship between alcohol exposure and risky decision-making, though the enduring effects of adolescent ethanol exposure on risky decision-making in adulthood have not been fully explored. Studies using positive reinforcement have shown that adolescent intermittent ethanol (AIE) exposure results in higher levels of risky decision-making in adulthood, but the effects of AIE on punishment-mediated decision-making have not been explored.

View Article and Find Full Text PDF

Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus.

View Article and Find Full Text PDF

Background: Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored.

View Article and Find Full Text PDF

The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive.

View Article and Find Full Text PDF

Background: Human adolescence is a crucial stage of neurological development during which ethanol (EtOH) consumption is often at its highest. Alcohol abuse during adolescence may render individuals at heightened risk for subsequent alcohol abuse disorders, cognitive dysfunction, or other neurological impairments by irreversibly altering long-term brain function. To test this possibility, we modeled adolescent alcohol abuse (i.

View Article and Find Full Text PDF

Background: The long-term consequences of adolescent alcohol abuse that persist into adulthood are poorly understood and have not been widely investigated. We have shown that intermittent exposure to alcohol during adolescence decreased the amplitude of GABAA receptor (GABAA R)-mediated tonic currents in hippocampal dentate granule cells in adulthood. The aim of this study was to investigate the enduring effects of chronic intermittent alcohol exposure during adolescence or adulthood on the expression of hippocampal GABAA Rs.

View Article and Find Full Text PDF

Background: Chronic alcohol use, especially exposure to alcohol during adolescence or young adulthood, is closely associated with cognitive deficits that may persist into adulthood. Therefore, it is essential to identify possible neuronal mechanisms underlying the observed deficits in learning and memory. Hippocampal interneurons play a pivotal role in regulating hippocampus-dependent learning and memory by exerting strong inhibition on excitatory pyramidal cells.

View Article and Find Full Text PDF

Background: Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats.

Methodology/principal Findings: Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover.

View Article and Find Full Text PDF

Background: In recent years, it has become clear that acute ethanol (EtOH) affects various neurobiological and behavioral functions differently in adolescent animals than in adults. However, less is known about the long-term neural consequences of chronic EtOH exposure during adolescence, and most importantly whether adolescence represents a developmental period of enhanced vulnerability to such effects.

Methods: We made whole-cell recordings of GABAA receptor-mediated tonic inhibitory currents from dentate gyrus granule cells (DGGCs) in hippocampal slices from adult rats that had been treated with chronic intermittent ethanol (CIE) or saline during adolescence, young adulthood, or adulthood.

View Article and Find Full Text PDF