Publications by authors named "Mary-Jo Wick"

Crohn's disease (CD) is a chronic condition characterized by recurrent flares of inflammation in the gastrointestinal tract. Disease etiology is poorly understood and is characterized by dysregulated immune activation that progressively destroys intestinal tissue. Key cellular compartments in disease pathogenesis are the intestinal epithelial layer and its underlying lamina propria.

View Article and Find Full Text PDF

Inflammasomes are intracellular protein complexes whose activation results in proinflammatory cytokines. Inflammasomes are implicated in Crohn´s disease (CD) pathogenesis, yet the contribution of inflammasomes in intestinal epithelial cells (IECs) versus lamina propria (LP) macrophages is poorly understood. Whether inflammasome expression in intestinal tissue reflects the serum inflammatory protein profile of patients is also not known.

View Article and Find Full Text PDF

Background And Aims: Uncontrolled activation of intestinal mononuclear phagocytes [MNPs] drives chronic inflammation in inflammatory bowel disease [IBD]. Triggering receptor expressed on myeloid cells 1 [TREM-1] has been implicated in the pathogenesis of IBD. However, the role of TREM-1+ cell subsets in driving IBD pathology and the link with clinical parameters are not understood.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel disease (IBD) consists of conditions like Crohn's disease and ulcerative colitis that can severely impact health and quality of life due to chronic inflammation in the gastrointestinal tract.
  • Intestinal mononuclear phagocytes (MNPs) are key immune cells that help maintain the gut’s protective barrier and regulate immune responses, but in those genetically prone, they can contribute to the uncontrolled inflammation seen in IBD.
  • The paper reviews the development of MNPs and their specific functions, which remain largely unclear during IBD, aiming to enhance understanding of how these cells influence health and disease.
View Article and Find Full Text PDF

Even though more than 30 years have passed since the eradication of smallpox, high titers of smallpox-specific antibodies are still detected in the blood of subjects vaccinated in childhood. In fact, smallpox-specific antibody levels are maintained in serum for more than 70 years. The generation of life-long immunity against infectious diseases such as smallpox and measles has been thoroughly documented.

View Article and Find Full Text PDF

Long-lived plasma cells secreting vaccinia-specific antibodies are detected in human bone marrow >35 years after the eradication of smallpox.Long-lived plasma cells secreting vaccinia-specific antibodies are still able to express the B-lymphocyte antigen CD19.

View Article and Find Full Text PDF

CD103(+)CD11b(+) dendritic cells (DC) are the major migratory DC subset in the small intestine lamina propria (siLP) and their survival is dependent on the transcription factor interferon regulatory factor 4 (IRF4). Mice with a DC-specific deletion of irf4 (CD11c-cre.Irf4 mice) have reduced mucosal CD103(+)CD11b(+) DC and altered T cell differentiation to protein antigen.

View Article and Find Full Text PDF

Background: Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potent amplifier of inflammation. Recently, the antimicrobial peptide PGLYRP-1 was shown to be the ligand of TREM-1. Here, the ability of an anti-TREM-1 antibody to dampen the release of proinflammatory cytokines by colon lamina propria cells (LPCs) from patients with IBD was investigated and correlated with PGLYRP-1 levels.

View Article and Find Full Text PDF

Objective: Anti-TNF-α treatment constitutes a mainstay in the treatment of Crohn's disease (CD), but its mechanisms of action are not fully understood. We aimed to investigate the effects of adalimumab, a human monoclonal TNF-α antibody, on macrophage (MQ) and dendritic cell (DC) subsets in mucosal biopsies and peripheral blood.

Material And Methods: Intestinal biopsies and blood samples were obtained from 12 different CD patients both before and 4 weeks after the initiation of the induction of adalimumab treatment.

View Article and Find Full Text PDF

The intestinal commensal microbiota is essential for many host physiological processes, but its impact on infectious diseases is poorly understood. Here we investigate the influence of the gut microbiota during oral Salmonella infection. We report a higher bacterial burden in mesenteric lymph nodes (MLN) of intragastrically infected germ-free (GF) mice compared to conventionally-raised (CONV-R) animals, despite similar inflammatory phagocyte recruitment.

View Article and Find Full Text PDF

Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues.

View Article and Find Full Text PDF

Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease.

View Article and Find Full Text PDF

Background: The colonic mucus layer plays a critical role in intestinal homeostasis by limiting contact between luminal bacteria and the mucosal immune system. A defective mucus barrier in animal models allows bacterial contact with the intestinal epithelium and results in spontaneous colitis. A defective mucus barrier is also a key feature of active ulcerative colitis (UC).

View Article and Find Full Text PDF

Background: The clinical course of ulcerative colitis (UC) is unpredictable. The need for reliable biomarkers to reflect disease severity and predict disease course is therefore large. We investigated whether cytokines in mucosal tissue and serum reflect clinical disease severity at the onset of UC and predict the future disease course.

View Article and Find Full Text PDF

Infections with Salmonella enterica serovars remain a serious problem worldwide. While serovar Typhi causes significant morbidity and mortality that is restricted to humans, serovar Typhimurium causes gastroenteritidis in humans and can also infect other animals. As mice with the susceptible Nramp1 locus get systemic infection with serovar Typhimurium, murine infection models using this serovar have been widely used to decipher the immune mechanisms required to survive systemic Salmonella infection.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are a subpopulation of dendritic cells specialized in the production of IFN-α/β, particularly during viral infections. In this way pDCs directly impact antiviral immunity and influence T cell activation. However, despite their role as modulators of the immune response, their function as antigen-presenting cells (APCs) remains poorly understood.

View Article and Find Full Text PDF

Monocytes and DCs originate from a shared precursor in the bone marrow, and steady-state DCs in lymphoid organs develop directly from the precursor rather than via a monocyte intermediate. However, monocytes can differentiate into DCs in tissues such as the lung and gut mucosa and into macrophages in most tissues. As Ly6C hi monocytes accumulate in lymphoid organs during oral Salmonella infection, we investigated their ability to develop into potential DCs, identified as CD11c hi MHC-II hi cells, in infected hosts.

View Article and Find Full Text PDF

Signalling pathways mediated by MyD88 are important for sensing Toll-like receptor (TLR) ligands and directing an immune response. However, the influence of MyD88-derived cytokines and interferon (IFN)-alpha/beta, the latter being made by both MyD88-dependent and -independent pathways, in phenotypic and functional dendritic cell (DC) maturation during infection is poorly understood. Here we investigate the contribution of MyD88-dependent and -independent pathways to DC maturation, CD8 T-cell activation and the generation of protective memory against Listeria monocytogenes.

View Article and Find Full Text PDF

Oral Salmonella infection recruits phagocytes to Peyer's patches (PP) and MLN. The chemokines induced in infected PP and MLN, the cellular sources during infection and the TLR signaling pathways involved in vivo are not known. Here, we show that CCL2, CXCL9 and CXCL2 mRNA are up-regulated in PP and MLN coincident with the first arrival of monocytes and neutrophils.

View Article and Find Full Text PDF

Dendritic cells (DCs), whose lifespan influences their ability to stimulate the immune system, are potent APCs that are critical for initiating immunity. Here, we show that oral infection with Salmonella enterica serovar Typhimurium induces death of DCs in the gut-draining lymph nodes. Although CD8alpha(+) DCs were sensitive to Salmonella-induced death, CD8alpha(-) DCs and in particular recruited CD11c(int)CD11b(+) inflammatory cells, were resistant.

View Article and Find Full Text PDF

Dendritic cells (DCs), monocytes, macrophages, and neutrophils are myeloid-derived phagocytes critical to controlling bacterial infections, and these cells have complementary functions to ensure host survival. Recent data have shed light on the dynamics and function of myeloid cells at the early stage of infection. In particular, murine infection models with Salmonella enterica serovar Typhimurium have been useful for understanding the host response required to develop immunity to systemic salmonellosis.

View Article and Find Full Text PDF

The interface between dendritic cells (DCs) and T cells is critical to elicit effective immunity against pathogens. The maturation state of DCs determines the quality of the interaction and governs the type of response. DCs can be matured directly through activating Toll-like receptors (TLRs) or indirectly by cytokines.

View Article and Find Full Text PDF
Article Synopsis
  • Immunity against bacterial infections relies on both the innate and adaptive immune systems, with the innate response activated by recognizing bacterial components.
  • The innate immune response includes various cell types that respond quickly to infection, while dendritic cells play a key role in connecting the innate and adaptive responses.
  • This review highlights new research on the early immune response to oral Salmonella infections, focusing on the roles of phagocytic cells and dendritic cell subsets in gut-associated lymphoid tissues.
View Article and Find Full Text PDF