Publications by authors named "Mary-Jessica N Laguette"

We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON).

View Article and Find Full Text PDF

Previous small-scale studies have shown an association between the gene and anterior cruciate ligament (ACL) injury risk. In this larger study, the genotype and allele frequency distributions of the rs12722 C/T and rs10628678 AGGG/deletion (AGGG/-) indel variants were compared between participants: (i) with ACL injury in independent and combined cohorts from South-Africa (SA) and Australia (AUS) vs controls (CON), and (ii) with any ligament (ALL) or only ACL injury in a Japanese (JPN) cohort vs CON. Samples were collected from SA (235 cases; 232 controls), AUS (362 cases; 80 controls) and JPN (500 cases; 1,403 controls).

View Article and Find Full Text PDF

Polymorphisms in VEGFA and KDR encoding proteins have been associated with anterior cruciate ligament (ACL) injury risk. We leveraged a collective sample from Sweden, Poland, and Australia to investigate the association of functional polymorphisms in VEGFA and KDR with susceptibility to ACL injury risk. Using a case-control genetic association approach, polymorphisms in VEGFA and KDR were genotyped and haplotypes inferred from 765 controls, and 912 cases clinically diagnosed with ACL rupture.

View Article and Find Full Text PDF

Objectives: To investigate the functional effect of implicated variants within BGN and COL5A1 on gene expression of components of the extracellular matrix (ECM) in a TGF-β-stimulated risk model for musculoskeletal soft tissue injuries.

Design: Experimental research, laboratory study.

Methods: Skin biopsies were obtained from nine healthy participants with either a combined increased or reduced risk profile for COL5A1 rs12722 C>T and BGN rs1126499 C>T - rs1042103 G>A, and primary fibroblast cell lines were established.

View Article and Find Full Text PDF

Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-β (TGF-β) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON).

View Article and Find Full Text PDF

MicroRNAs are small non-coding regulatory RNAs which may be released into the systemic circulation as a consequence of the body's adaptation to exercise. The expression profile of circulating miRNAs (ci-miRNAs) has been proposed as a potential diagnostic biomarker for adaptive responses of particular systems to physical exertion. Several miRNAs are recognized as regulators of signalling pathways such as the IGF1/PI3K/AKT/mTOR axis, relevant to exercise adaptation.

View Article and Find Full Text PDF

Objectives: To investigate the role of inter-individual variations in a particular glycoprotein, TNC, and its potential contribution to anterior cruciate ligament (ACL) injury susceptibility in Polish Caucasian participants. ACL rupture is one of the most prevalent and severe knee injury that predominantly occurs during sports participation, primarily via a non-contact mechanism. Several polymorphisms in genes encoding glycoproteins either independently or as allelic combinations, modulate the risk of musculoskeletal soft tissue injuries.

View Article and Find Full Text PDF