Publications by authors named "Mary-Jane Gething"

The endoplasmic reticulum HSP70 chaperone BiP/Kar2p is both the sensor for the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae and a target of transcriptional up-regulation by this signaling pathway. In this study, the molecular form of Kar2p that interacts with the Ire1p transmembrane receptor kinase to inhibit UPR signaling was shown to be the substrate-free, ATP-bound conformation. Oligosaccharide shielding experiments localized the binding site for Ire1p to the top of the back face of lobe IB of the Kar2p ATPase domain.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of approximately 5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of approximately 1.5 min.

View Article and Find Full Text PDF

The Ire1p transmembrane receptor kinase/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of targeting green fluorescent protein to the nucleus of yeast cells in a process requiring proteins involved in the Ran GTPase cycle that facilitates nuclear import.

View Article and Find Full Text PDF