Publications by authors named "Mary-Anne Anderson"

Article Synopsis
  • The study investigates balanced chromosomal abnormalities (BCAs) in 273 individuals with congenital anomalies using whole-genome sequencing to achieve higher resolution than traditional karyotyping.
  • The findings revealed that 93% of karyotypes were revised, with 21% of BCAs showing complexity not detectable by standard methods, highlighting the limitations of cytogenetics.
  • The research indicated that 33.9% of BCAs caused gene disruption tied to developmental issues, and some breakpoints affected crucial genomic regions, possibly worsening conditions like 5q14.3 microdeletion syndrome due to altered gene expression.
View Article and Find Full Text PDF

In Huntington's disease (HD), the size of the expanded HTT CAG repeat mutation is the primary driver of the processes that determine age at onset of motor symptoms. However, correlation of cellular biochemical parameters also extends across the normal repeat range, supporting the view that the CAG repeat represents a functional polymorphism with dominant effects determined by the longer allele. A central challenge to defining the functional consequences of this single polymorphism is the difficulty of distinguishing its subtle effects from the multitude of other sources of biological variation.

View Article and Find Full Text PDF

The 'expanded' HD CAG repeat that causes Huntington's disease (HD) encodes a polyglutamine tract in huntingtin, which first targets the death of medium-sized spiny striatal neurons. Mitochondrial energetics, related to N-methyl-d-aspartate (NMDA) Ca2+-signaling, has long been implicated in this neuronal specificity, implying an integral role for huntingtin in mitochondrial energy metabolism. As a genetic test of this hypothesis, we have looked for a relationship between the length of the HD CAG repeat, expressed in endogenous huntingtin, and mitochondrial ATP production.

View Article and Find Full Text PDF