Publications by authors named "Mary-Alice Coffroth"

Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death.

View Article and Find Full Text PDF
Article Synopsis
  • Microeukaryotes, like the dinoflagellate family Symbiodiniaceae, show faster genetic and functional variations compared to physical traits, making it essential to analyze diversity across different biological levels for better evolutionary insights.
  • Despite advancements in genomics, inconsistent interpretations of genetic data among researchers hinder progress in understanding Symbiodiniaceae and their roles in marine ecosystems.
  • The article identifies challenges in evaluating genetic diversity at the species, population, and community levels, proposes accepted techniques, and emphasizes the need for collaboration to overcome unresolved issues and stimulate advancements in coral reef research.
View Article and Find Full Text PDF

Background: Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts (Symbiodinium microadriaticum and Breviolum minutum) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum.

View Article and Find Full Text PDF

As coral reefs face warming oceans and increased coral bleaching, a whitening of the coral due to loss of microalgal endosymbionts, the possibility of evolutionary rescue offers some hope for reef persistence. In tightly linked mutualisms, evolutionary rescue may occur through evolution of the host and/or endosymbionts. Many obligate mutualisms are composed of relatively small, fast-growing symbionts with greater potential to evolve on ecologically relevant time scales than their relatively large, slower growing hosts.

View Article and Find Full Text PDF

The symbiotic relationship between dinoflagellate algae in the family Symbiodiniaceae and scleractinian corals forms the base of the tropical reef ecosystem. In scleractinian corals, recruits acquire symbionts either "vertically" from the maternal colony or initially lack symbionts and acquire them "horizontally" from the environment. Regardless of the mode of acquisition, coral species and individual colonies harbor only a subset of the highly diverse complex of species/taxa within the Symbiodiniaceae.

View Article and Find Full Text PDF

In many cases, understanding species' responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of in response to increased temperature.

View Article and Find Full Text PDF

Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits.

View Article and Find Full Text PDF

Symbionts within the family are important on coral reefs because they provide significant amounts of carbon to many different reef species. The breakdown of this mutualism that occurs as a result of increasingly warmer ocean temperatures is a major threat to coral reef ecosystems globally. Recombination during sexual reproduction and high rates of somatic mutation can lead to increased genetic variation within symbiont species, which may provide the fuel for natural selection and adaptation.

View Article and Find Full Text PDF

Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S.

View Article and Find Full Text PDF

Massive coral bleaching events associated with high sea surface temperatures are forecast to become more frequent and severe in the future due to climate change. Monitoring colony recovery from bleaching disturbances over multiyear time frames is important for improving predictions of future coral community changes. However, there are currently few multiyear studies describing long-term outcomes for coral colonies following acute bleaching events.

View Article and Find Full Text PDF

For many coral species, the obligate association with phylogenetically diverse algal endosymbiont species is dynamic in time and space. Here, we used controlled laboratory inoculations of newly settled, aposymbiotic corals (Orbicella faveolata) with two cultured species of algal symbiont (Symbiodinium microadriaticum and S. minutum) to examine the role of symbiont identity on growth, survivorship, and thermal tolerance of the coral holobiont.

View Article and Find Full Text PDF

Molecular approaches have begun to supersede traditional morphometrics in the species delineation of micro-eukaryotes. In addition to fixed differences in DNA sequences, recent genetics-based descriptions within the dinoflagellate genus Symbiodinium have incorporated confirmatory morphological, physiological, and ecological evidence when possible. However, morphological and physiological data are difficult to collect from species that have not been cultured, while the natural ecologies of many cultured species remain unknown.

View Article and Find Full Text PDF

Microorganisms in terrestrial and marine ecosystems are essential to environmental sustainability. In the marine environment, invertebrates often depend on metabolic cooperation with their endosymbionts. Coral reefs, one of the most important marine ecosystems, are based on the symbiosis between a broad diversity of dinoflagellates of the genus Symbiodinium and a wide phyletic diversity of hosts (i.

View Article and Find Full Text PDF

Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan-algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co-evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan-algal associations.

View Article and Find Full Text PDF

Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode.

View Article and Find Full Text PDF

Background: Dinoflagellates are known for their capacity to form harmful blooms (e.g., "red tides") and as symbiotic, photosynthetic partners for corals.

View Article and Find Full Text PDF

Background: DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution.

View Article and Find Full Text PDF

Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular.

View Article and Find Full Text PDF

Cladocora caespitosa is a reef-building zooxanthellate scleractinian coral in the Mediterranean Sea. Mortality events have recurrently affected this species during the last decade. Thus, knowledge of its genetic structure, population diversity, and connectivity is needed to accomplish suitable conservation plans.

View Article and Find Full Text PDF

Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation.

View Article and Find Full Text PDF

Background: Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups.

View Article and Find Full Text PDF

Background: Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral's intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate.

View Article and Find Full Text PDF

Here we report primers targeting 10 microsatellite loci of dinoflagellates in the genus Symbiodinium (clade B1/B184) symbiotic with the Caribbean sea fan coral, Gorgonia ventalina. Primers were tested on 12 Symbiodinium B1/B184 cultures, as well as 40 genomic DNA extracts of G. ventalina tissue samples.

View Article and Find Full Text PDF

Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses.

View Article and Find Full Text PDF