This brief review assesses the role of Ca signaling in lung endothelium in regulation of endothelial permeability. The disconnect between experimental and clinical outcomes to date may be due, in part, to the use of tools which yield information about aggregate permeability or Ca responses in lung or in endothelial monolayers. The teaching point of this review is to "unpack the box," i.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2016
Here, we tested the hypothesis that animals with severe pulmonary arterial hypertension (PAH) display increased sensitivity to vascular permeability induced by activation of store-operated calcium entry. To test this hypothesis, wild-type and transient receptor potential channel 4 (TRPC4) knockout Fischer 344 rats were given a single injection of Semaxanib (SU5416; 20 mg/kg) followed by 3 wk of exposure to hypoxia (10% oxygen) and a return to normoxia (21% oxygen) for an additional 2-3 wk. This Semaxanib/hypoxia/normoxia (i.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2016
Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway.
View Article and Find Full Text PDFOur previous work has shown that the increased lung endothelial permeability response to 14,15-epoxyeicosatrienoic acid (14,15-EET) in rat lung requires Ca(2+) entry via vanilloid type-4 transient receptor potential (TRPV4) channels. Recent studies suggest that activation of TRPV4 channels in systemic vascular endothelium prolongs agonist-induced hyperpolarization and amplifies Ca(2+) entry by activating Ca(2+)-activated K(+) (KCa) channels, resulting in vessel relaxation. Activation of endothelial KCa channels thus has potential to increase the electrochemical driving force for Ca(2+) influx via TRPV4 channels and to amplify permeability responses to TRPV4 activation in lung.
View Article and Find Full Text PDFIn isolated rat lung perfused with a physiological saline solution (5.5mM glucose), complex I inhibitors decrease lung tissue ATP and increase endothelial permeability (Kf), effects that are overcome using an amphipathic quinone (CoQ1) [Free Radic. Biol.
View Article and Find Full Text PDFCa(2+) entry through transient receptor potential vanilloid 4 (TRPV4) results in swelling, blebbing, and detachment of the epithelium and capillary endothelium in the intact lung. Subsequently, increased permeability of the septal barrier and alveolar flooding ensue. In this study, we tested the hypothesis that TRPV4 activation provides a Ca(2+) source necessary for proteolytic disruption of cell-cell or cell-matrix adhesion by matrix metalloproteinases (MMPs) 2 and 9, thus increasing septal barrier permeability.
View Article and Find Full Text PDFThis review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium.
View Article and Find Full Text PDFIn previous studies, blockade or gene deletion of either myosin light chain kinase (MLCK) or the mechanogated transient receptor potential vanilloid 4 (TRPV4) channel attenuated mechanical lung injury. To determine their effects on calcium entry, rat pulmonary microvascular endothelial cells (RPMVEC) were labeled with fluo-4 and calcium entry initiated with the TRPV4 agonist, 4α-phorbol 12, 13-didecanoate (4αPDD). Mean calcium transients peaked at ∼25 sec and persisted ∼500 sec.
View Article and Find Full Text PDFMitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.
View Article and Find Full Text PDFPulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF.
View Article and Find Full Text PDFThe pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2010
We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration coefficients (K(f)) measured in isolated perfused lungs after ventilation with successive 30-min periods of 9, 25, and 35 cmH(2)O PIP did not significantly increase in lungs from TRPV4(-/-) mice but increased >2.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2010
Regulated P-selectin surface expression provides a rapid measure for endothelial transition to a proinflammatory phenotype. In general, P-selectin surface expression results from Weibel-Palade body (WPb) exocytosis. Yet, it is unclear whether pulmonary capillary endothelium possesses WPbs or regulated P-selectin surface expression and, if so, how inflammatory stimuli initiate exocytosis.
View Article and Find Full Text PDFMicrocirculation
February 2010
Objective: Epoxyeicosatrienoic acids (EETs) are protective in both myocardial and brain ischemia, variously attributed to activation of K(ATP) channels or blockade of adhesion molecule upregulation. In this study, we tested whether EETs would be protective in lung ischemia-reperfusion injury.
Methods: The filtration coefficient (K(f)), a measure of endothelial permeability, and expression of the adhesion molecules vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) were measured after 45 minutes ischemia and 30 minutes reperfusion in isolated rat lungs.
Pulmonary vascular endothelial cells express a variety of ion channels that mediate Ca(2+) influx in response to diverse environmental stimuli. However, it is not clear whether Ca(2+) influx from discrete ion channels is functionally coupled to specific outcomes. Thus we conducted a systematic study in mouse lung to address whether the alpha(1G) T-type Ca(2+) channel and the transient receptor potential channel TRPV4 have discrete functional roles in pulmonary capillary endothelium.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2008
Current emphasis on translational application of genetic models of lung disease has renewed interest in the measurement of the gravimetric filtration coefficient (K(f)) as a means to assess vascular permeability changes in isolated perfused lungs. The K(f) is the product of the hydraulic conductivity and the filtration surface area, and is a sensitive measure of vascular fluid permeability when the pulmonary vessels are fully recruited and perfused. We have observed a remarkable consistency of the normalized baseline K(f) values between species with widely varying body weights from mice to sheep.
View Article and Find Full Text PDFHigh vascular pressure targets the lung septal network, causing acute lung injury. While calcium entry in septal endothelium has been implicated, the channel involved is not known. This study tested the hypothesis that the vanilloid transient receptor potential channel, TRPV4, is a critical participant in the permeability response to high vascular pressure.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2007
We have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel may initiate this acute permeability increase because endothelial calcium entry through TRPV4 channels occurs in response to hypotonic mechanical stress, heat, and P-450 epoxygenase metabolites of arachidonic acid.
View Article and Find Full Text PDFPhenotypic heterogeneity in pulmonary vascular endothelial cells extends to regulation of endothelial permeability, a process which often depends upon Ca2 + entry from the extracellular space. Scanning electron microscopy of vascular corrosion casts has documented distinct patterns of barrier disruption. Store depletion and activation of Ca2 + entry via canonical transient potential channels (TRPC1 and TRPC4) disrupts the barrier in extraalveolar vessels.
View Article and Find Full Text PDFMicrocirculation
December 2006
Unique features of the pulmonary circulation impact its function in health and disease, not the least of which is the existence of developmentally distinct, functionally heterogeneous extra-alveolar and septal capillary networks. The impact of ion channel expression and regulation in lung vascular smooth muscle or endothelium in these vascular compartments provides a focus for this special topics issue. Reviews and original contributions from experts in the field discuss two broad groups of ion channels, drawing on studies utilizing biophysical and molecular approaches in heterologous expression systems, in vitro approaches in pulmonary vascular smooth muscle and endothelial cells, and physiologic studies in animal models of chronic pulmonary hypertension.
View Article and Find Full Text PDFDisruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel TRPV4 disrupts the alveolar septal barrier.
View Article and Find Full Text PDFAm J Respir Crit Care Med
November 2005
Rationale: In chronic heart failure, the lung endothelial permeability response to angiotensin II or thapsigargin-induced store depletion is ablated, although the mechanisms are not understood.
Objectives: To determine whether the ablated permeability response to store depletion during heart failure was due to impaired expression of store operated Ca2+ channels in lung endothelium.
Methods: Heart failure was induced by aortocaval fistula in rats.
Store-operated calcium (SOC) entry is sufficient to disrupt the extra-alveolar, but not the alveolar, endothelial cell barrier. Mechanism(s) underlying such insensitivity to transitions in cytosolic calcium ([Ca2+]i) in microvascular endothelial cells are unknown. Depletion of stored Ca2+ activates a larger SOC entry response in extra-alveolar (pulmonary artery; PAECs) than alveolar (pulmonary microvascular; PMVECs) endothelial cells.
View Article and Find Full Text PDFThe controversy over the use of nonpulsatile versus pulsatile pumps for maintenance of normal organ function during ex vivo perfusion has continued for many years, but resolution has been limited by lack of a congruent mathematical definition of pulsatility. We hypothesized that the waveform frequency and amplitude, as well as the underlying mean distending pressure are all key parameters controlling vascular function. Using discrete Fourier Analysis, our data demonstrate the complexity of the pulmonary arterial pressure waveform in vivo and the failure of commonly available perfusion pumps to mimic in vivo dynamics.
View Article and Find Full Text PDF