Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells.
View Article and Find Full Text PDFMetabolism is a key regulator of cancer biology; however, its role in therapeutic resistance has remained largely unresolved. Several new studies disclose that mitochondrial metabolism and oxidative phosphorylation at least in part drive chemoresistance in cancer and thus have important implications for targeted and more effective chemotherapies.
View Article and Find Full Text PDFChemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis , we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs.
View Article and Find Full Text PDFPrevious studies have demonstrated that the small molecule thrombopoietin (TPO) mimetic, eltrombopag (E), induces apoptosis in acute myeloid leukemia (AML) cells. Here, we sought to define the mechanism of the anti-leukemic effect of eltrombopag. Our studies demonstrate that, at a concentration of 5 μM E in 2% serum, E induces apoptosis in leukemia cells by triggering PARP cleavage and activation of caspase cascades within 2-6 hours.
View Article and Find Full Text PDFGlioblastoma is the most aggressive form of gliomas and is associated with short survival. Recent advancements in molecular genetics resulted in the identification of glioma genomic, epigenomic and transcriptomic hallmarks, and multidimensional data allowed clustering of glioblastomas into molecular subtypes. Parallel with these developments, much scientific attention has been attracted by the exploration of two functional processes linked to mitochondrial regulation.
View Article and Find Full Text PDFBackground: Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion.
View Article and Find Full Text PDFObjectives: Mitochondrial dysfunction in peripheral blood mononuclear cells has been linked to immune dysregulation and organ failure in adult sepsis, but pediatric data are limited. We hypothesized that pediatric septic shock patients exhibit mitochondrial dysfunction within peripheral blood mononuclear cells which in turn correlates with global organ injury.
Design: Prospective observational study.
Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins.
View Article and Find Full Text PDFBackground: Hemorrhagic shock is a leading cause of death following severe trauma, and platelet transfusions are frequently necessary to achieve hemostasis. Platelets, however, require special storage conditions, and storage time has been associated with loss of platelet quality. We hypothesized that standard storage conditions have a deleterious effect on platelet mitochondrial function and platelet activation.
View Article and Find Full Text PDFBackground: Trauma and hypovolemic shock are associated with mitochondrial dysfunction and septic complications. We hypothesize that hypovolemic shock and resuscitation results in peripheral blood mononuclear cell (PBMC) mitochondrial dysfunction that is linked to immunosuppression.
Methods: With the use of a decompensated shock model, Long-Evans rats were bled to a mean arterial pressure of 40 mm Hg until the blood pressure could no longer be maintained without fluid infusion.
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by GAA triplet expansions or point mutations in the FXN gene on chromosome 9q13. The gene product called frataxin, a mitochondrial protein that is severely reduced in FRDA patients, leads to mitochondrial iron accumulation, Fe-S cluster deficiency and oxidative damage. The tissue specificity of this mitochondrial disease is complex and poorly understood.
View Article and Find Full Text PDFPurpose: Glucagon like peptide-1 (7-36) amide (GLP-1) is an incretin hormone with multiple salutary cardiovascular effects. A short course of the GLP-1 analogue Exendin-4 (Ex-4) in the neonatal period prevents the development of mitochondrial dysfunction and oxidative stress in a rat prone to obesity and diabetes. We sought to evaluate whether neonatal Ex-4 can exert the same effect in the normal rat heart, as well as whether Ex-4 could affect susceptibility to cardiac reperfusion injury.
View Article and Find Full Text PDFIn humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis.
View Article and Find Full Text PDFRecent reports describe hematopoietic abnormalities in mice with targeted instability of the mitochondrial genome. However, these abnormalities have not been fully described. We demonstrate that mutant animals develop an age-dependent, macrocytic anemia with abnormal erythroid maturation and megaloblastic changes, as well as profound defects in lymphopoiesis.
View Article and Find Full Text PDFIn mammals, the liver integrates nutrient uptake and delivery of carbohydrates and lipids to peripheral tissues to control overall energy balance. Hepatocytes maintain metabolic homeostasis by coordinating gene expression programs in response to dietary and systemic signals. Hepatic tissue oxygenation is an important systemic signal that contributes to normal hepatocyte function as well as disease.
View Article and Find Full Text PDFProduction of a red blood cell's hemoglobin depends on mitochondrial heme synthesis. However, mature red blood cells are devoid of mitochondria and rely on glycolysis for ATP production. The molecular basis for the selective elimination of mitochondria from mature red blood cells remains controversial.
View Article and Find Full Text PDFCoenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency.
View Article and Find Full Text PDFSuccinate dehydrogenase (SDH) and fumarate hydratase (FH) are components of the tricarboxylic acid (TCA) cycle and tumor suppressors. Loss of SDH or FH induces pseudohypoxia, a major tumor-supporting event, which is the activation of hypoxia-inducible factor (HIF) under normoxia. In SDH- or FH-deficient cells, HIF activation is due to HIF1alpha stabilization by succinate or fumarate, respectively, either of which, when in excess, inhibits HIFalpha prolyl hydroxylase (PHD).
View Article and Find Full Text PDFThe p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2006
HIFalpha prolyl hydroxylases (PHDs) are a family of enzymes that regulate protein levels of the alpha subunit of the hypoxia inducible transcription factor (HIF) under different oxygen levels. PHDs catalyse the conversion of a prolyl residue, molecular oxygen and alpha-ketoglutarate to hydroxy-prolyl, carbon dioxide and succinate in a reaction dependent on ferrous iron and ascorbate as cofactors. Recently it was shown that pseudo-hypoxia, HIF induction under normoxic conditions, is an important feature of tumours generated as a consequence of inactivation of the mitochondrial tumour suppressor 'succinate dehydrogenase' (SDH).
View Article and Find Full Text PDFA key adaptation enabling the fetus to survive in a limited energy environment may be the reprogramming of mitochondrial function, which can have deleterious effects. Critical questions are whether mitochondrial dysfunction progressively declines after birth, and if so, what mechanism might underlie this process. To address this, we developed a model of intrauterine growth retardation (IUGR) in the rat that leads to diabetes in adulthood.
View Article and Find Full Text PDFSeveral mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2003
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes between 3 and 6 mo of age that is associated with insulin resistance. Alterations in hepatic glucose metabolism are known to contribute to the hyperglycemia of diabetes; however, the mechanisms underlying this phenomenon have not been fully explained.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2003
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in later life. We have developed a model of uteroplacental insufficiency, a common cause of intrauterine growth retardation, in the rat. Early in life, the animals are insulin resistant and by 6 mo of age they develop diabetes.
View Article and Find Full Text PDFMitochondrial disease is classically associated with deep gray-matter lesions. When white matter is involved, the lesions are typically subcortical and overshadowed by more significant disease in the gray matter. We report six infants in five families who developed neurodegenerative diseases characterized primarily by abnormalities in deep white-matter structures such as the periventricular region, internal capsule, and corpus callosum.
View Article and Find Full Text PDF