Publications by authors named "Mary Perdue"

Background: Food allergy and chronic intestinal inflammation are common in western countries. The complex of antigen/IgE is taken up into the body from the gut lumen with the aid of epithelial cell-derived CD23 (low affinity IgE receptor II) that plays an important role in the pathogenesis of intestinal allergy. This study aimed to elucidate the role of mast cell on modulation of antigen/IgE complex transport across intestinal epithelial barrier.

View Article and Find Full Text PDF

Background: Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood.

Methods: Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP) 70 was evaluated.

View Article and Find Full Text PDF

Recurrent Crohn's disease originates with small erosions in the follicle-associated epithelium overlying the Peyer's patches. Animal studies have illustrated mucosal immune regulation by dendritic cells located in the subepithelial dome. The aim of this study was to characterize the dendritic cells at this specific site in patients with Crohn's disease.

View Article and Find Full Text PDF

Background: Previously, we showed that corticotropin-releasing factor (CRF) injected i.p. mimicked epithelial responses to stress, both stimulating ion secretion and enhancing permeability in the rat colon, and mast cells were involved.

View Article and Find Full Text PDF

The role of chronic infections, such as Helicobacter pylori (Hp), to produce sustained changes in host physiology remains controversial. In this study, we investigate whether the antigenic or bacterial content of the gut, after Hp eradication, influences the changes in gut function induced by chronic Hp infection. Mice were infected with Hp for 4 mo and then treated with antibiotics or placebo for 2 wk.

View Article and Find Full Text PDF

Chronic psychological stress causes intestinal barrier dysfunction and impairs host defense mechanisms mediated by corticotrophin-releasing factor (CRF) and mast cells; however, the exact pathways involved are unclear. Here we investigated the effect of chronic CRF administration on colonic permeability and ion transport functions in rats and the role of mast cells in maintaining the abnormalities. CRF was delivered over 12 days via osmotic minipumps implanted subcutaneously in wild-type (+/+) and mast cell-deficient (Ws/Ws) rats.

View Article and Find Full Text PDF

Stress has been shown to have both central and peripheral effects, promoting psychological illness (such as anxiety and depression), as well influencing peripheral disease in the intestine. Stress in humans can exacerbate symptoms of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), lowering visceral pain thresholds and decreasing mucosal barrier function. Studies in rodents have revealed that both acute and chronic exposure to stressors can lead to pathophysiology of the small and large intestine, including altered ion secretion and increased epithelial permeability (by both transcellular and paracellular pathways).

View Article and Find Full Text PDF

Background: Dendritic cell (DC) redistribution during early stages of enteritis may be related to ileal barrier dysfunction. We used a rat model of ileitis to examine this hypothesis.

Methods: Sprague-Dawley rats were injected with indomethacin or saline and euthanized 2, 6, 12, or 24 hours later.

View Article and Find Full Text PDF

A defect in mitochondrial activity contributes to many diseases. We have shown that monolayers of the human colonic T84 epithelial cell line exposed to dinitrophenol (DNP, uncouples oxidative phosphorylation) and nonpathogenic Escherichia coli (E. coli) (strain HB101) display decreased barrier function.

View Article and Find Full Text PDF

We investigated myeloid-dendritic cell (DC) marker and Toll-like receptor (TLR)-2 and 4 distributions in ileal samples from Crohn's disease (CD) patients (n = 14) and controls (n = 13). In controls, no TLR-2+ cells were observed, and higher numbers of TLR-4+ and DC-SIGN+ cells (P < 0.01) were detected in ileal samples when compared versus colonic tissues.

View Article and Find Full Text PDF

Neonatal maternal separation (MS) predisposes adult rats to develop stress-induced mucosal barrier dysfunction/visceral hypersensitivity and rat pups to develop colonic epithelial dysfunction. Our aim was to examine if enhanced epithelial permeability in such pups resulted from abnormal regulation by enteric nerves. Pups were separated from the dam for 3 h/day (days 4-20); nonseparated (NS) pups served as controls.

View Article and Find Full Text PDF

Background: We previously showed that neonatal maternal separation (MS) of rat pups causes immediate and long-term changes in intestinal physiology.

Aim: To examine if administration of probiotics affects MS-induced gut dysfunction.

Methods: MS pups were separated from the dam for 3 h/day from days 4 to 19; non-separated (NS) pups served as controls.

View Article and Find Full Text PDF

Dysregulated epithelial cell kinetics associated with mucosal barrier dysfunction may be involved in certain intestinal disorders. We previously showed that chronic psychological stress, in the form of repetitive sessions of water avoidance stress (WAS), has a major detrimental impact on ileal barrier function. We hypothesized that these changes were related to a disturbance in enterocyte kinetics.

View Article and Find Full Text PDF

Chronic psychological stress impacts many functions of the gastrointestinal tract. However, the effect of stress on nutrient absorption is poorly documented. This study was designed to investigate glucose transporters in rats submitted to different periods of water-avoidance stress (WAS).

View Article and Find Full Text PDF

Background: Although several factors have been implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanisms underlying the recurrent relapses have not yet been clarified. We hypothesized that epithelial barrier dysfunction, associated with intestinal motor disturbances, could play a key role in exacerbation of inflammatory illness due to an increased uptake of luminal antigen and bacterial translocation.

Methods: Indomethacin administration to rats induced a long-lasting oscillation of active and quiescent phases of inflammation associated with phases of hypo and hypermotility.

View Article and Find Full Text PDF

We previously reported that CD23/FcepsilonRII (low-affinity IgE receptor) is expressed on human intestinal epithelial cells and is responsible for transepithelial transport of IgE. In this study, we compared the transport of IgE with that of immune complexes in both the apical-to-serosal and the serosal-to-apical directions across HT29 epithelial cell layers and examined the effects of two p38 MAPK inhibitors, SKF86002 and SB203580, on the expression and function of CD23. Our study showed that both p38 MAPK inhibitors at 10 microM significantly inhibited constitutive and IL-4-upregulated CD23 protein expression in epithelial cells.

View Article and Find Full Text PDF

We examined ileal dendritic cell (DC) subpopulations in a rat model of indomethacin-induced enteritis to determine changes in phenotype and distribution associated with increased mucosal permeability during acute and chronic stages of inflammation. Sprague-Dawley rats were treated with indomethacin (7.5 mg/kg subcutaneously, 2 injections 48 h apart).

View Article and Find Full Text PDF

There is increasing evidence that stress plays a role in the pathophysiology of chronic intestinal disorders, but the mechanisms remain unclear. Previous studies in rats have revealed that stress decreases gut barrier function and allows excessive uptake of luminal material. Here, we investigated whether chronic psychological stress acts to induce sensitization of intestinal tissues to oral antigens.

View Article and Find Full Text PDF

Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to nonpathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings.

View Article and Find Full Text PDF

Previous studies have shown that early life stress in the form of intermittent maternal separation (MS) predisposes adult rats to develop stress-induced intestinal mucosal dysfunction and visceral hypersensitivity. However, the mechanism involved in the functional abnormalities is unclear. Our aim was to study immature animals during or shortly after exposure to MS to determine whether there are early pathophysiological changes in the gut.

View Article and Find Full Text PDF

Intestinal bacteria play an etiologic role in triggering and perpetuating chronic inflammatory bowel disorders. However, the precise mechanisms whereby the gut microflora influences intestinal cell function remain undefined. Therefore, the effects of the non-pathogenic prototype translocating Escherichia coli, strain C25 on the barrier properties of human T84 and Madine-Darby canine kidney type 1 epithelial cells were examined.

View Article and Find Full Text PDF

Background & Aims: In previous studies in rodent models of food allergy, we identified that sensitization induces expression of CD23 on intestinal epithelial cells and results in enhanced IgE-dependent transepithelial antigen uptake; further studies in CD23-/- mice provided evidence that CD23 is involved in protected transport of antigen into the body. Little information exists in humans on receptor-mediated immunoglobulin (Ig)E transport across epithelia. The present study was designed to examine expression of CD23 by human epithelial cells, determine its isoform and regulation by interleukin (IL) 4, and identify the role of CD23 in transepithelial IgE transport.

View Article and Find Full Text PDF

Although Helicobacter spp. have been viewed as bacteria with low pathogenicity, many investigators have shown that these low-grade pathogens have the potential to become a severe threat in immunocompromised, inbred, and transgenic animals. Therefore the presence of Helicobacter spp.

View Article and Find Full Text PDF

Tight junctions between intestinal epithelial cells prevent ingress of luminal macromolecules and bacteria and protect against inflammation and infection. During stress and inflammation, mast cells mediate increased mucosal permeability by unknown mechanisms. We hypothesized that mast cell tryptase cleaves protease-activated receptor 2 (PAR2) on colonocytes to increase paracellular permeability.

View Article and Find Full Text PDF

In mouse models of food allergy, we recently characterized a new CD23b-derived splice form lacking extracellular exon 5, bDelta5, which undergoes constitutive internalization and mediates the transepithelial transport of free IgE, whereas classical CD23b is more efficient in transporting IgE/allergen complexes. These data suggested that regulation of endocytosis plays a central role in CD23 functions and drove us to systematically compare the intracellular trafficking properties of human and murine CD23 splice forms. We found that CD23 species show similar endocytic behaviors in both species; CD23a undergoes constitutive clathrin-dependent internalization, whereas CD23b is stable at the plasma membrane.

View Article and Find Full Text PDF