Publications by authors named "Mary Olesnavich"

Article Synopsis
  • Ferroptosis is a type of cell death linked to lipid peroxidation and is being targeted in cancer treatment, emphasizing the importance of understanding its triggers.
  • Despite lipid deprivation reducing the overall levels of polyunsaturated fatty acids (PUFAs) in cancer cells, these cells become more vulnerable to ferroptosis.
  • The study reveals that when deprived of lipids, cancer cells activate a pathway that reallocates PUFAs from triglycerides to synthesize and accumulate specific PUFAs in phospholipids, thereby increasing their sensitivity to ferroptosis despite lower PUFA levels overall.
View Article and Find Full Text PDF

Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis.

View Article and Find Full Text PDF

BACKGROUNDTransrenal cell-free tumor DNA (TR-ctDNA), which transits from the bloodstream into urine, has the potential to enable noninvasive cancer detection for a wide variety of nonurologic cancer types.MethodsUsing whole-genome sequencing, we discovered that urine TR-ctDNA fragments across multiple cancer types are predominantly ultrashort (<50 bp) and, therefore, likely to be missed by conventional ctDNA assays. We developed an ultrashort droplet digital PCR assay to detect TR-ctDNA originating from HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC) and confirmed that assaying ultrashort DNA is critical for sensitive cancer detection from urine samples.

View Article and Find Full Text PDF

Objectives: To develop a high-performance droplet digital PCR (ddPCR) assay capable of enhancing the detection of human papillomavirus (HPV) circulating tumor DNA (ctDNA) in plasma from patients with HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC).

Materials And Methods: Plasma samples from subjects with HPV+ OPSCC were collected. We developed a high-performance ddPCR assay designed to simultaneously target nine regions of the HPV16 genome.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has impacted lives significantly and greatly affected an already vulnerable population, college students, in relation to mental health and public safety. Social distancing and isolation have brought about challenges to student's mental health. Mobile health apps and wearable sensors may help to monitor students at risk for COVID-19 and support their mental well-being.

View Article and Find Full Text PDF

Background: Health care workers (HCWs) have been working on the front lines of the COVID-19 pandemic with high risks of viral exposure, infection, and transmission. Standard COVID-19 testing is insufficient to protect HCWs from these risks and prevent the spread of disease. Continuous monitoring of physiological data with wearable sensors, self-monitoring of symptoms, and asymptomatic COVID-19 testing may aid in the early detection of COVID-19 in HCWs and may help reduce further transmission among HCWs, patients, and families.

View Article and Find Full Text PDF

Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state.

View Article and Find Full Text PDF